Angewandte
Chemie
ing see Scheme 5): J6,7 = 14.9 Hz, J8,9 = 14.7 Hz, and J10,11
8.7 Hz.
The carbon skeleton of our target molecule 3 was
=
W. E. Childers, Jr., H. W. Pinnick, Tetrahedron 1981, 37, 2091 –
096 (2-methyl-2-butene used as hypochlorite scavenger).
14] Prepared by a procedure analogous to that of: a) N. Jeker, C.
Tamm, Helv. Chim. Acta 1988, 71, 1895 – 1903; b) G. T. Bourne,
D. C. Horwell, M. C. Pritchard, Tetrahedron 1991, 47, 4763 –
2
1
[
[
[
6]
[29]
[29]
completed by a Stille coupling ([Pd(dba) ],
AsPh3
)
2
between the brominated enediyne carboxylate 4a and the
stannylated heptatrienylidenebutenolide 23 (Scheme 5). Pro-
vided that exposure to atmospheric oxygen and daylight was
4774.
15] Prepared by a procedure analogous to that of: J.-F. Betzer, F.
Delaloge, B. Muller, A. Pancrazi, J. Prunet, J. Org. Chem. 1997,
62, 7768 – 7780.
[16] A. S.-Y. Lee, C.-W. Wu, Tetrahedron 1999, 55, 12531 – 12542.
17] Method: F. Reimnitz, Ph.D. thesis, Universität Freiburg, 2000,
[
30]
avoided, the reaction gave xerulinic acid ester 24 in 73%
yield. In the final step, this compound was deprotected by
[
treatment with anhydrous Bu NF in THF to give 3 in 61%
4
pp. 71–72, 147 – 148.
yield. The resulting specimen of synthetic xerulinic acid (3)
1
13
[18] The method is same as that described for the oxidation of
heterocycle-substituted sulfides en route to Julia–Lythgoe ole-
fins: P. A. Blakemore, P. J. Kocienski, S. Marzcak, J. Wicha,
Synthesis 1999, 1209 – 1215.
[19] T.-L. Chan, S. Fong, Y. Li, T.-O. Man, C.-D. Poon, J. Chem. Soc.
Chem. Commun. 1994, 1771 – 1772; pure THF was used instead
of tBuOH/THF (3:1).
was scrutinized by H, C, and 2D NMR spectroscopy at the
same field strengths (500 MHz/126 MHz) and in the same
solvent ([D ]DMSO) as the natural product. The juxtaposi-
6
[
1,31]
tion of our data and those from Steglich and co-workers
unambiguously showed that our compound and the natural
product are identical.
[
[
20] For a review, see: L. A. Paquette, Org. React. 1977, 25, 1 – 71.
In summary, we have completed the first, highly con-
vergent synthesis of xerulinic acid (3). Although xerulinic acid
is perhaps not “complex”, its preparation is by no means
simple and its tendency to “polymerize” cannot be over-
estimated. Our synthetic strategy towards 3 is distinct from
previous strategies aimed at the xerulin family of com-
1
21] 5: H NMR (499.9 MHz, CDCl , TMS): d = 0.83–0.97 (m; 6
3
SnCH CH CH CH ), overlaps with 0.89 (t, J = 7.3 Hz; 6
2
2
2
3
vic
SnCH CH CH CH ), 1.31 (tq, both Jvic = 7.3 Hz; 6
2
2
2
3
SnCH CH CH CH ), 1.41–1.58 (m; 6 SnCH CH CH CH ),
2
2
2
3
2
2
2
3
6.15 (m , higher order; 3-H, 4-H), 6.29 (d, J = J6,5 = 18.6 Hz,
c
1,2
2
each peak flanked by Sn isotope satellites as 2d,
0.1 Hz, J117Sn,H = 67.2 Hz; 1-H, 6-H), 6.56 ppm (m , higher
order; 2-H, 5-H); C NMR (125.7 MHz, CDCl ): d = 9.6
flanked by Sn isotope satellites as 2d,
119Sn,H
J =
[
32]
2
7
pounds.
Bisstannane 5 should open a general route to
c
1
3
polyunsaturated molecules containing a trans,trans,trans-hex-
atriene moiety and lactone 6 should open a general route to g-
alkylidenebutenolides.
3
1
1
(
3
J
119Sn,C1’
119Sn,C1’’
= J =
1
1
44.8 Hz,
J
117Sn,C1’
= J
117Sn,C1’’
2 2 2 3
= 329.4 Hz; SnCH CH CH CH ),
1
as
3.7 (SnCH CH CH CH ), 27.3 (flanked by Sn isotope satellites
2
2
3
2
3
3
3
3
1d,
J
119Sn,C3’
= J
119Sn,C3’’
= J
117Sn,C3’
117Sn,C3’’
= J = 54.5 Hz;
Received: January 12, 2004 [Z53729]
SnCH CH CH CH ), 29.1 (flanked by Sn isotope satellites as
2
2
2
3
2
2
2
2
1
d,
J
119Sn,C2’
= J
119Sn,C2’’
= J
117Sn,C2’
= J
117Sn,C1’’
= 20.6 Hz;
Keywords: CꢁC coupling · inhibitors · lactones ·
SnCH CH CH CH ), 134.5 (flanked by Sn isotope satellites as
2 2 2 3
.
3
3
3
3
natural products · stereoselective synthesis
1d,
J
119Sn,C3 = J119Sn,C4 = J117Sn,C3 = J117Sn,C4 = 73.6 Hz; C3, C4),
1
1
J
35.6 (flanked by Sn isotope satellites as 2d,
119Sn,C6
J
119Sn,C1
=
1
1
1
= 380.0 Hz, J
117Sn,C1
= J
117Sn,C6
= 363.3 Hz; C1, C6), 146.9
2
2
(
J
flanked by Sn isotope satellites as 1d,
117Sn,C2
J
119Sn,C2
119Sn,C5
= J =
2
2
117Sn,C5
= J = 6.4 Hz; C2, C5); SELINCOR (S. Berger, J.
[
1] D. Kuhnt, T. Anke, H. Besl, M. Bross, R. Herrmann, U. Mocek,
B. Steffan, W. Steglich, J. Antibiot. 1990, 43, 1413 – 1420.
2] K. Siegel, R. Brückner, Synlett 1999, 1227 – 1230.
3] K. Siegel, R. Brückner, Chem. Eur. J. 1998, 4, 1116 – 1122.
4] R. Rossi, F. Bellina, A. Catanese, L. Mannina, D. Valensin,
Tetrahedron 2000, 56, 479 – 487.
Magn. Reson. 1989, 81, 561 – 564; 499.9 MHz/125.7 MHz,
CDCl ): J = 15.1 Hz, J3,2 = J4,5 = 10.1 Hz; elemental analysis
[
[
[
3
3,4
(
%): calcd for C H Sn (656.3): C 54.74, H 9.19; found: C 53.81,
30 60 2
H 8.97.
[
22] a) K. C. Nicolaou, T. K. Chakraborty, A. D. Piscopio, N.
Minowa, P. Bertinato, J. Am. Chem. Soc. 1993, 115, 4419 –
[
[
5] E.-i. Negishi, A. Alimardanov, C. Xu, Org. Lett. 2000, 2, 65 – 67.
6] For reviews, see: a) J. K. Stille, Angew. Chem. 1986, 98, 504 – 519;
Angew. Chem. Int. Ed. Engl. 1986, 25, 508 – 524; b) V. Farina,
G. P. Roth in Advances in Metal-Organic Chemistry, Vol. 5 (Ed.:
L. S. Liebeskind), JAI, Greenwich, Connecticut, 1996, pp. 1 – 53;
c) V. Farina, V. Krishnamurthy, W. J. Scott, Org. React. 1997, 50,
4
8
420; b) J. S. Panek, C. E. Masse J. Org. Chem. 1997, 62, 8290 –
291; c) C. E. Masse, M. Yang, J. Solomon, J. S. Panek, J. Am.
Chem. Soc. 1998, 120, 4123 – 4134; d) P. M. Pihko, A. M. P.
Koskinen, Synlett 1999, 1966 – 1968.
[
23] a) A. Kiehl, A. Eberhardt, M. Adam, V. Enkelmann, K. Müllen,
Angew. Chem. 1992, 104, 1623 – 1626; Angew. Chem. Int. Ed.
Engl. 1992, 31, 1588 – 1591; b) D. Nozawa, H. Takikawa, K. Mori,
J. Chem. Soc. Perkin Trans. 1 2000, 2043 – 2046.
[24] A fully conjugated 3,8-dimethyl-C10-bis(tributylstannane) has
also been synthesized and used as a building block: B. Vaz, R.
Alvarez, A. R. de Lera, J. Org. Chem. 2002, 67, 5040 – 5043.
[25] a) A. J. Manny, S. Kjelleberg, N. Kumar, R. de Nys, R. W. Read,
P. Steinberg, Tetrahedron 1997, 53, 15813 – 15826. b) The
aforementioned authors prepared lactone 6 for the first time
but the Experimental Section of their study details no more than
1
– 652.
[
[
7] A. Sorg, K. Siegel, R. Brückner, Synlett 2004, 321 – 325.
8] a) D. W. Knight, Contemp. Org. Synth. 1994, 1, 287 – 315; b) E.-i.
Negishi, M. Kotora, Tetrahedron 1997, 53, 6707 – 6738; c) R.
Brückner, Chem. Commun. 2001, 141 – 152; d) R. Brückner,
Curr. Org. Chem. 2001, 5, 679 – 718.
[
9] S. R. Landor, E. S. Pepper, J. Chem. Soc. C 1966, 2283 – 2285.
[
10] Prepared by a procedure analogous to that of: T. V. Bohner, R.
Beaudegnies, A. Vasella, Helv. Chim. Acta 1999, 82, 143 – 160.
1
13
[
11] All new compounds gave satisfactory H and C NMR spectra
and correct elemental analyses, except acid 12, unstable ester 4a,
and xerulinic acid (3), for all of which, however, correct high-
resolution mass spectra were obtained.
a
2% yield of 6 separated chromatographically from a
54%:8%:3%:2%:trace mixture of five compounds; accordingly,
6 becomes a synthetically useful reagent only on the grounds of
our two-step synthesis (Scheme 5).
[
[
12] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155 – 4156.
13] a) B. O. Lindgren, T. Nilsson, Acta Chem. Scand. 1973, 27, 888 –
[26] N. Kumar, R. W. Read (Unisearch Limited, Australia), PCT
Appl. 20020000639 2002 [Chem. Abstr. 2002, 136, 69697].
890 (resorcinol used as hypochlorite scavenger); b) B. S. Bal,
Angew. Chem. Int. Ed. 2004, 43, 4523 –4526
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4525