Angewandte
Communications
Chemie
[6] a) P. Knochel, J. Am. Chem. Soc. 1990, 112, 7431 – 7433; b) M.
5 mol% [Cu(NCMe)4]PF6, and 10 mol% L1) at ꢀ108C for 2.5 h
Sakai, S. Saito, G. Kanai, A. Suzuki, N. Miyaura, Tetrahedron
1996, 52, 915 – 924.
[7] A. Pelter, S. Peverall, A. Pitchford, Tetrahedron 1996, 52, 1085 –
1094.
results in > 98% conversion of 4a but only 70% to 6.
[12] For an example of copper(I)-catalyzed transesterification, see:
C. Munro-Leighton, S. A. Delp, E. D. Blue, T. B. Gunnoe,
Organometallics 2007, 26, 1483 – 1493.
[8] a) K. Endo, T. Ohkubo, M. Hirokami, T. Shibata, J. Am. Chem.
Soc. 2010, 132, 11033 – 11035; b) K. Endo, T. Ohkubo, T. Shibata,
Org. Lett. 2011, 13, 3368 – 3371; c) K. Endo, T. Ohkubo, T.
Ishioka, T. Shibata, J. Org. Chem. 2012, 77, 4826 – 4831; d) C.
Sun, B. Potter, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 6534 –
6537; e) B. Potter, A. A. Szymaniak, E. K. Edelstein, J. P.
Morken, J. Am. Chem. Soc. 2014, 136, 17918 – 17921; f) K.
Hong, X. Liu, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 10581 –
10584; g) J. R. Coombs, L. Zhang, J. P. Morken, J. Am. Chem.
Soc. 2014, 136, 16140 – 16143; h) H. Y. Sun, K. Kubota, D. G.
Hall, Chem. Eur. J. 2015, 21, 1 – 10; i) J. Kim, S. Park, J. Park,
S. H. Cho, Angew. Chem. Int. Ed. 2016, 55, 1498 – 1501; Angew.
Chem. 2016, 128, 1520 – 1523; j) Y. Shi, A. H. Hoveyda, Angew.
Chem. Int. Ed. 2016, 55, 3455 – 3458; Angew. Chem. 2016, 128,
3516 – 3519; k) Z.-Q. Zhang, B. Zhang, X. Lu, J.-H. Liu, X.-Y.
Lu, B. Xiao, Y. Fu, Org. Lett. 2016, 18, 952 – 955; l) J. Park, Y.
Lee, J. Kim, S. H. Cho, Org. Lett. 2016, 18, 1210 – 1213; m) M.
Zhan, R.-Z. Li, Z.-D. Mou, C.-G. Cao, J. Liu, Y.-W. Chen, D. Niu,
ACS Catal. 2016, 6, 3381 – 3386; for recent syntheses of 1,1-
alkylbisboronate esters, see: n) Z.-Q. Zhang, C.-T. Yang, L.-J.
Liang, B. Xiao, X. Lu, J.-H. Liu, Y.-Y. Sun, T. B. Marder, Y. Fu,
Org. Lett. 2014, 16, 6342 – 6345; o) A. S. Batsanov, J. A. Cabeza,
M. G. Crestani, M. R. Fructos, P. Garcꢀa-ꢁlvarez, M. Gille, Z.
Lin, T. B. Marder, Angew. Chem. Int. Ed. 2016, 55, 4707 – 4710;
Angew. Chem. 2016, 128, 4785 – 4788; p) A. K. Cook, S. D.
Schimler, A. J. Matzger, M. S. Sanford, Science 2016, 351, 1421 –
1424; q) K. T. Smith, S. Berritt, M. Gonzꢂlez-Moreiras, S. Ahn,
M. R. Smith III, M.-H. Baik, D. J. Mindiola, Science 2016, 351,
1424 – 1427.
[13] The decreased e.r. value is likely due to reaction with LiOEt.
[14] The lower enantioselectivity of 9b is not due to partial
racemization during purification. Re-subjection of 9b to silica
column chromatography affords 9b in 85:15 e.r.
[15] Increasing the equivalents of LiOtBu or decreasing the reaction
temperature does not improve conversion into 10e.
[16] For examples of stereoretentive reactions of organocopper
alkyls, see: a) M. J. Campbell, J. S. Johnson, Org. Lett. 2007, 9,
1521 – 1524; b) Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2009,
131, 3160 – 3161; c) C. Zhong, S. Kunii, Y. Kosaka, M. Sawamura,
H. Ito, J. Am. Chem. Soc. 2010, 132, 11440 – 11442; d) N.
Matsuda, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2013,
135, 4934 – 4937; e) T. Jia, P. Cao, B. Wang, Y. Lou, X. Yin, M.
Wang, J. Liao, J. Am. Chem. Soc. 2015, 137, 13760 – 13763; f) Y.
Yang, S.-L. Shi, D. Niu, P. Liu, S. L. Buchwald, Science 2015, 349,
62 – 66; for stereoinvertive reactions of organocopper alkyls, see:
g) Ref. [16c]; h) K. M. Logan, K. B. Smith, M. K. Brown,
Angew. Chem. Int. Ed. 2015, 54, 5228 – 5231; Angew. Chem. 2015,
127, 5317 – 5320.
[17] Steric hindrance of the primary and secondary alkyl boronic
esters likely inhibits reaction.
[18] S. J. Connon, S. Blechert, Angew. Chem. Int. Ed. 2003, 42, 1900 –
1923; Angew. Chem. 2003, 115, 1944 – 1968.
[19] S. Kumar, P. Kaur, A. Mittal, P. Singh, Tetrahedron 2006, 62,
4018 – 4026.
[20] 24% unreacted benzophenone. The e.r. value was determined
by conversion into the known corresponding diol (see the
Supporting Information for details).
[21] Studies to elucidate the boron enantiotopic group-selectivity
during transmetalation are ongoing.
[9] Absolute configuration of the tertiary alcohol 6a formed with
(R)-MonoPhos is R (see the Supporting Information).
[10] Reactions run for 48 h at ꢀ258C did not lead to an increase in
yield.
[11] Treatment of 4a with 2 equivalents of LiOtBu (no Cu or L1) at
ꢀ108C for 2.5 h results in > 98% conversion of 4a and 90%
conversion to 6. Treatment of 4a with 2 equivalents of LiOtBu,
Received: April 8, 2016
Revised: May 13, 2016
Published online: && &&, &&&&
Angew. Chem. Int. Ed. 2016, 55, 1 – 6
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5
These are not the final page numbers!