26
A.V. Biradar, T. Asefa / Applied Catalysis A: General 435–436 (2012) 19–26
1-phenylethanol (2) in about similar proportions suggests that both
products, 1 and 2, predominantly form in parallel via two different
mechanisms, rather than through the possible transformation of
one of them (2) to the other (1).
[4] M.G. Clerici, P. Ingallina, Catal. Today 41 (1998) 351–364.
[5] T. Mehler, W. Behnen, J. Wilken, J. Martens, Tetrahedron Asym. 5 (1994)
185–188.
[6] R.T. Blickenstaff, W.R. Hanson, S. Reddy, R. Witt, Bioorg. Med. Chem. 3 (1995)
917–922.
[7] G.R. Newkomeand, D.L. Fishel, J. Org. Chem. 31 (1966) 677–681.
[8] H. Ma, J. Xu, C. Chen, Q.H. Zhang, J.B. Ning, H. Miao, L.P. Zhou, X.Q. Li, Catal. Lett.
113 (2007) 104–108.
[9] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16 (1987) 405–408.
[10] M.D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley,
G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely,
Nature 437 (2005) 1132–1135.
[11] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43 (2004)
1546–1548.
[12] S. Carrettin, P. McMorn, P. Johnston, Chem. Commun. (2002) 696–697.
[13] Y.J. Xu, P. Landon, D. Enache, A. Carley, M. Roberts, G. Hutchings, Catal. Lett. 101
(2005) 175–179.
[14] S. Biella, L. Prati, M. Rossi, J. Catal. 206 (2002) 242–247.
[15] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings, Phys.
Chem. Chem. Phys. 5 (2003) 1329–1336.
[16] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Top. Catal. 29 (2004) 95–102.
[17] S. Biella, L. Prati, M. Rossi, Inorg. Chim. Acta. 349 (2003) 253–257.
[18] S. Bawaked, N.F. Dummer, N. Dimitratos, D. Bethell, Q. He, C.J. Kiely, G.J. Hutch-
ings, Green Chem. 11 (2009) 1037–1044.
[19] A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Bäumer, Science 327 (2010)
319–322.
[20] R.L. Oliveira, P.K. Kiyohara, L.M. Rossi, Green Chem. 12 (2010) 144–149.
[21] M. Kidwai, S. Bhardwaj, Appl. Catal. A: Gen. 387 (2010) 1–4.
[22] L. Hu, X. Cao, J. Yang, M. Li, H. Hong, Q. Xu, J. Ge, L. Wang, J. Lu, L. Chen, H. Gu,
Chem. Commun. 47 (2011) 1303–1305.
[23] S.E. Dapurkar, Z. Shervani, T. Yokoyama, Y. Ikushima, H. Kawanami, Catal. Lett.
130 (2009) 42–47.
[24] L. Wang, H. Wang, P. Hapala, L. Zhu, L. Ren, X. Meng, J.P. Lewis, F.-S. Xiao, J. Catal.
281 (2011) 30–39.
[25] A. Corma, H. Garcia, Chem. Soc. Rev. 37 (2008) 2096–2126.
[26] L. Chen, J. Hu, R. Richards, J. Am. Chem. Soc. 131 (2009) 914–915.
[27] P. Wu, P. Bai, Z. Lei, K.P. Loh, X.S. Zhao, Microporous Mesoporous Mater. 141
(2010) 222–230.
[28] D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D.
Stucky, Science 279 (1998) 548–552.
[29] Y. Xie, S. Quinlivan, T. Asefa, J. Phys. Chem. C. 112 (2008) 9996–10003.
[30] J. Sun, D. Ma, H. Zhang, X. Liu, X. Han, X. Bao, G. Weinberg, N. Pfänder, D. Su, J.
Am. Chem. Soc. 128 (2006) 15756–15764.
[31] W. Yan, V. Petkov, S.M. Mahurin, S.H. Overbury, S. Dai, Catal. Commun. 6 (2005)
404–408.
Thus, based on these observations, the plausible mechanism
of our Au/SBA-15 catalyzed alkane oxidation probably starts with
Au nanoparticle-catalyzed decomposition of TBHP (t-BuOOH) into
t-BuOO. or t-BuO. radical species. This will be followed by two dif-
secondary alcohols, from the alkane, as shown in Scheme 2. The t-
BuOH is not expected to deactivate the Au nanocatalysts, as alcohols
are, in fact, sometimes used as solvents for Au-catalyzed oxidation
reactions of other substances such as alkanes as shown in Table 4
or other alcohols [44].
4. Conclusions
In conclusion, we have synthesized mesoporous silica-
supported nanosized Au particles (Au/SBA-15) and demonstrated
their use as efficient and selective catalysts for oxidation of
ethylbenzene, various other alkyl-substituted benzenes, and dif-
ferent n-alkanes. The Au/SBA-15 catalysts catalyzed the reactions
with TBHP as oxidant and gave predominantly the corresponding
ketones under the reaction conditions we employed. Further-
more, the Au/SBA-15 catalysts generated the ketone products
selectively without requiring additives such as carboxylic acids.
The Au/SBA-15 materials were also proven to be versatile selec-
tive oxidation catalysts as they successfully catalyzed a series
of other alkyl-substituted benzenes such as propylbenzene and
diphenylmethane, giving their corresponding ketone products in
high yields and selectivity. In additionAu/SBA-15 materials cat-
alyzed n-alkanes such as n-hexane and n-hexadecane, with high
selectivities toward their corresponding ketone products. Finally,
the possible reaction mechanisms for these Au/SBA-15-catalyzed
alkane oxidation reactions into predominantly ketone product,
with minor alcohol product, were proposed.
[32] T. Hudlicy, SYNLETT 18 (2010) 2701–2707.
[33] P. Haider, B. Kimmerle, F. Krumeich, W. Kleist, J. Grunwaldt, A. Baiker, Catal.
Lett. 125 (2008) 169–176.
[34] M.S. Chen, D.W. Goodman, Science 306 (2004) 252–255.
[35] M.S. Chen, D.W. Goodman, Catal. Today 111 (2006) 22–33.
Acknowledgements
[36] C.Z.
Andrade,
L.M.
Alves,
Curr.
Org.
Chem.
9
(2005)
195–218.
TA gratefully acknowledges the financial assistance provided by
the United States National Science Foundation (NSF) (under Grant
Nos: CAREER CHE-1004218, NSF DMR-0968937, and NSF NanoEHS-
1134289, through NSF-ACIF fellowiships in 2010, and NSF Special
Creativity grant in 2011) for his research work on nanocatalysis.
[37] (a) D. Chatterjee, S. Basak, J. Muzart, J. Mol. Catal. A: Chem. 271 (2007)
270–276;
(b) A.A. Boyd, E. Villenave, R. Lesclaux, Atmos. Environ 37 (2003) 2751–2760;
(c) D.D.M. Wayner, D.J. McPhee, D. Griller, J. Am. Chem. Soc. 110 (1988)
132–137.
[38] (a) U.R. Pillai, E. Sahle-Demessie, J. Mol. Catal. A: Chem. 191 (2003) 93–100;
(b) S.W. Hovorka, M.J. Hageman, C. Schoneich, Pharm. Res. 19 (2002) 538–545.
[39] V.S.R. Rajasekhar Pullabhotla, S.B. Jonnalagadda, Ind. Eng. Chem. Res. 48 (2009)
9097–9105.
Appendix A. Supplementary data
[40] (a) D.H.R. Barton, V.N. Le Gloahec, H. Patin, F. Launay, New J. Chem. 22 (1998)
559–563;
(b) D.H.R. Barton, V.N. Le Gloahec, H. Patin, New J. Chem. 22 (1998) 565–568;
(c) D.H.R. Barton, V.N. Le Gloahec, Tetrahedron 54 (1998) 15457–15468.
[41] Y. Liu, H. Tsunoyama, T. Akitab, T. Tsukuda, Chem. Commun. 46 (2010) 550–552.
[42] Y.F. Li, SYNLETT (2007) 2922–2923.
[43] V. Mendez, K. Guillois, S. Daniele, A. Tuel, V. Caps, Dalton Trans. 39 (2010)
8457–8463.
[44] T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kanedaa, Adv. Synth.
Catal. 351 (2009) 1890–1896.
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.apcata.2012.05.029.
References
[1] S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan, D.H.B. Ripin, Chem. Rev. 106
(2006) 2943–2989.
[2] T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 105 (2005) 2329–2363.
[3] R.A. Sheldon, A.I. Arends, U. Hanefeld, Green Chemistry and Catalysis, Wiley-
VCH Verlag GmbH & Co KGaA, Weinheim, 2007.
[45] B.P.C. Hereijgers, B.M. Weckhuysen, J. Catal. 270 (2010) 16–25.