Organic Letters
Letter
(12) Baudoux, J.; Cahard, D. Electrophilic Fluorination with N−F
Reagents. In Organic Reactions; John Wiley & Sons, Inc.: 2004; Vol. 69,
pp 347.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(13) (a) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R.
A. Chem. Rev. 2016, 116, 8912. (b) Miro, J.; del Pozo, C.; Toste, F. D.;
Fustero, S. Angew. Chem., Int. Ed. 2016, 55, 9045. (c) For a recent
review, see: Chen, P.; Liu, G. Eur. J. Org. Chem. 2015, 2015, 4295.
(d) Honjo, T.; Phipps, R. J.; Rauniyar, V.; Toste, F. D. Angew. Chem., Int.
Ed. 2012, 51, 9684. (e) For a related mono-fluorination of chiral
enamides, see: Xu, Y.-S.; Tang, Y.; Feng, H.-J.; Liu, J.-T.; Hsung, R. P.
Org. Lett. 2015, 17, 572.
Experimental procedures as well as NMR spectra and
characterization data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(14) (a) Prakash, G. K. S.; Papp, A.; Munoz, S. B.; May, N.; Jones, J.-P.;
Haiges, R.; Esteves, P. M.; Mathew, T. Chem. - Eur. J. 2015, 21, 10170.
(b) Munoz, S. B.; Aloia, A. N.; Moore, A. K.; Papp, A.; Mathew, T.;
Fustero, S.; Olah, G. A.; Surya Prakash, G. K. Org. Biomol. Chem. 2016,
14, 85. (c) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Munoz, S.; Olah, G. A.
J. Org. Chem. 2013, 78, 3300. (d) Surya Prakash, G. K.; Munoz, S. B.;
Papp, A.; Mathew, T.; Olah, G. A. Asian J. Org. Chem. 2012, 1, 146.
(e) Munoz, S. B.; Ni, C.; Zhang, Z.; Wang, F.; Shao, N.; Mathew, T.;
Olah, G. A.; Prakash, G. K. S. Eur. J. Org. Chem. 2017, 2017, 2322.
Notes
The authors declare no competing financial interest.
́
(f) Mathew, T.; Papp, A. A.; Paknia, F.; Fustero, S.; Surya Prakash, G. K.
ACKNOWLEDGMENTS
■
Chem. Soc. Rev. 2017, 46, 3060.
Financial support by the Loker Hydrocarbon Research Institute
is gratefully acknowledged. S.B.M. acknowledges financial
support from a USC−CONACyT postdoctoral fellowship.
(16) These results suggest that the fluorine atom α to nitrogen
−
originates from nucleophilic fluoride attack from BF4 (in the case of
entry 3) or KF (entry 4) and not from the N−F unit.
(17) Though PF6− could release fluoride under certain conditions, the
ability of II to selectively afford 2a could be rationalized by the relative
Lewis acidity strength of BF3 vs PF5 (fluoride ion affinity = 83.1 kcal/mol
vs 94.9 kcal/mol, respectively). See: Christe, K. O.; Dixon, D. A.;
McLemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. J. J. Fluorine
Chem. 2000, 101, 151.
REFERENCES
■
(1) (a) Hiyama, T. Organofluorine Compounds: Chemistry and
Applications; Springer-Verlag: Berlin, 2000. (b) Beg
Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; Wiley-VCH:
Weinheim, 2008. (c) Filler, R.; Kobayashi, Y.; Yagupolskii, L. M.
Organofluorine Compounds In Medicinal Chemistry and Biomedical
Applications; Elsevier: Amsterdam, 1993.
́
ue,
́
J.-P.; Bonnet-
(18) (a) Product 2b was prepared successfully on a 1 g scale using
method B. (b) As expected, large amounts of H2O present at the onset
of the reaction suppressed the dehydration of 4. For a detailed study, see
(2) (a) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and
̈
Medicinal Chemistry: from biophysical aspects to clinical applications;
Imperial College Press: London, 2012. (b) Wang, J.; San
́ ́
chez-Rosello,
(19) (a) List, B. Chem. Commun. 2006, 819. (b) Erkkila, A.; Majander,
̈
M.; Acena, J. L.; Del Pozo, C.; Sorochinsky, A. E.; Fustero, S.;
̃
I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416. (c) Melchiorre, P.; Marigo,
M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
(d) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178.
(e) Grondal, C.; Jeanty, V.; Enders, D. Nat. Chem. 2010, 2, 167.
(f) Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.;
Jørgensen, K. A. Chem. Commun. 2011, 47, 632.
́
Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432. (c) Catalan, S.;
Munoz, S. B.; Fustero, S. Chimia 2014, 68, 382.
(3) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619.
(4) (a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. (b) Prakash, G.
K.S.; Mandal, M.; Schweizer, S.; Petasis, N. A.; Olah, G. A. J. Org. Chem.
2002, 67, 3718. (c) O’Hagan, D.; Wang, Y.; Skibinski, M.; Slawin, A. M.
Z. Pure Appl. Chem. 2012, 84, 1587.
(5) (a) Prakash, G. K. S.; Zibinsky, M.; Upton, T. G.; Kashemirov, B.
A.; McKenna, C. E.; Oertell, K.; Goodman, M. F.; Batra, V. K.; Pedersen,
L. C.; Beard, W. A.; Shock, D. D.; Wilson, S. H.; Olah, G. A. Proc. Natl.
Acad. Sci. U. S. A. 2010, 107, 15693. (b) Upton, T. G.; Kashemirov, B. A.;
McKenna, C. E.; Goodman, M. F.; Prakash, G. K. S.; Kultyshev, R.;
Batra, V.; Shock, D. D.; Pedersen, L. C.; Beard, W. A.; Wilson, S. H. Org.
Lett. 2009, 11, 1883.
(6) Blasko, G.; Gula, D. J.; Shamma, M. J. Nat. Prod. 1982, 45, 105.
(7) Belliotti, T. R.; Brink, W. A.; Kesten, S. R.; Rubin, J. R.; Wustrow, D.
J.; Zoski, K. T.; Whetzel, S. Z.; Corbin, A. E.; Pugsley, T. A.; Heffner, T.
G.; Wise, L. D. Bioorg. Med. Chem. Lett. 1998, 8, 1499.
(8) (a) Bootwicha, T.; Panichakul, D.; Kuhakarn, C.; Prabpai, S.;
Kongsaeree, P.; Tuchinda, P.; Reutrakul, V.; Pohmakotr, M. J. Org.
Chem. 2009, 74, 3798. (b) Pharikronburee, V.; Punirun, T.; Soorukram,
D.; Kuhakarn, C.; Tuchinda, P.; Reutrakul, V.; Pohmakotr, M. Org.
Biomol. Chem. 2013, 11, 2022.
(20) Huang, Y.-Y.; Cai, C.; Yang, X.; Lv, Z.-C.; Schneider, U. ACS
Catal. 2016, 6, 5747.
(21) (a) Yu, X.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. Eur. J.
Org. Chem. 2011, 2011, 3060. (b) Chen, M.-W.; Chen, Q.-A.; Duan, Y.;
Ye, Z.-S.; Zhou, Y.-G. Chem. Commun. 2012, 48, 1698. (c) Suc,
I.; Gredicak, M. Chem. Commun. 2016, 52, 2071. (d) Suneja, A.; Unhale,
R. A.; Singh, V. K. Org. Lett. 2017, 19, 476.
́
J.; Dokli,
̌
(22) (a) We propose that the reaction proceeds through a TS
analogous to the one reported in ref 21c, in agreement with Simon and
Goodman’s model; thus, we tentatively assign (+)-6 as the S
́
enantiomer. (b) Simon, L.; Goodman, J. M. J. Org. Chem. 2011, 76,
1775. (c) The corresponding N-Me derivative 2a gave rise to the
addition product as a racemate, which lends support to the proposed
(23) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014,
114, 9047.
(24) This deactivation could take place in two ways: (i) by decreasing
the basicity of the hydroxyl group and (ii) by destabilizing the adjacent
positive charge developed upon formation of the iminium ion.
(9) Barrio, P.; Ibanez, I.; Herrera, L.; Roman, R.; Catalan, S.; Fustero, S.
Chem. - Eur. J. 2015, 21, 11579.
(10) (a) Cardona, F.; Goti, A. Nat. Chem. 2009, 1, 269. (b) McDonald,
R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (c) Wolfe, J. P.
Angew. Chem., Int. Ed. 2012, 51, 10224.
(11) (a) Olah, G. A.; Nojima, M.; Kerekes, I. Synthesis 1973, 1973, 779.
(b) Olah, G. A.; Nojima, M.; Kerekes, I. Synthesis 1973, 1973, 780.
(c) Olah, G. A.; Nojima, M. Synthesis 1973, 1973, 785. (d) York, C.;
Prakash, G. K. S.; Olah, G. A. J. Org. Chem. 1994, 59, 6493.
D
Org. Lett. XXXX, XXX, XXX−XXX