A. Zare et al. / Journal of Molecular Liquids 178 (2013) 113–121
115
2
H), 7.05 (d, J=8.3 Hz, 2H), 8.99 (s, 1H); 13C NMR (75 MHz,
DMSO-d ): δ (ppm) 14.6, 18.7, 26.9, 29.6, 32.6, 35.4, 50.6, 55.3, 59.4,
O
S
O
S
O
S
6
O
N
N
104.4, 110.7, 113.5, 128.8, 140.5, 145.1, 149.7, 157.7, 167.4, 194.7.
O
H
O
H
O
H
O
Ethyl 2,7,7-trimethyl-5-oxo-4-p-tolyl-1,4,5,6,7,8-hexahydro-
O
O
1
quinoline-3-carboxylate (5): H NMR (500 MHz, CDCl
3
): δ (ppm) 0.96
(
s, 3H), 1.08 (s, 3H), 1.24 (t, J=7.1 Hz, 3H), 2.15–2.31 (m, 7H), 2.35
H
O
H
O
H
O
O
S
O
S
O
S
(s, 3H), 4.09 (q, J=7.1 Hz, 2H), 5.04 (s, 1H), 6.76 (s, 1H), 7.02 (d, J=
13
7.8 Hz, 2H), 7.21 (d, J=7.8 Hz, 2H); C NMR (125 MHz, CDCl
ppm) 14.7, 19.7, 21.5, 27.6, 29.8, 33.1, 36.6, 41.3, 51.2, 60.2, 106.6,
12.4, 128.3, 129.0, 135.8, 143.9, 144.7, 149.3, 167.9, 196.1.
Ethyl 4-(4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-
3
): δ
O
N
N
(
1
O
O
O
1
hydroquinoline-3-carboxylate (6): H NMR (300 MHz, DMSO-d
6
): δ
4
Fig. 1. Molecular self-assembly of [Dsim]HSO by hydrogen bonds.
(
ppm) 0.86 (s, 3H), 1.00 (s, 3H), 1.14 (t, J=7.0 Hz, 3H), 1.96 (d, J=
1
2
6.0 Hz, 1H), 2.15 (d, J=16.1 Hz, 1H), 2.26 (s, 3H), 2.36–2.49 (m,
H), 3.96 (q, J=7.0 Hz, 2H), 4.74 (s, 1H), 6.56 (d, J=8.1 Hz, 2H), 6.93
2
.4. Selected spectral data of the products
13
(
d, J=8.1 Hz, 2H), 8.94 (s, 1H), 9.01 (s, 1H); C NMR (75 MHz,
DMSO-d
10.8, 114.9, 128.8, 138.9, 144.8, 149.6, 155.7, 167.5, 194.7.
Ethyl 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-
6
): δ (ppm) 14.6, 18.7, 26.9, 29.6, 32.6, 35.3, 50.8, 59.4, 104.6,
Ethyl 2,7,7-trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexahydro-
1
1
quinoline-3-carboxylate (1): H NMR (300 MHz, DMSO-d
6
): δ (ppm)
0
2
7
(
2
1
.85 (s, 3H), 1.00 (s, 3H), 1.13 (t, J=7.0 Hz, 3H), 2.01–2.20 (m, 2H),
1
hydroquinoline-3-carboxylate (7): H NMR (300 MHz, DMSO-d
6
): δ
.29 (s, 3H), 2.38–2.50 (m, 2H), 3.97 (q, J=7.0 Hz, 2H), 4.82 (s, 1H),
.05 (m, 1H), 7.18 (t, J=6.7 Hz, 2H), 7.21 (t, J=6.5 Hz, 2H), 9.12
(
ppm) 0.83 (s, 3H), 0.99 (s, 3H), 1.10 (t, J=6.9 Hz, 3H), 1.96 (d, J=
1
2
7
6.0 Hz, 1H), 2.16 (d, J=16.1 Hz, 1H), 2.29 (s, 3H), 2.38–2.49 (m,
1
3
s, 1H); C NMR (75 MHz, DMSO-d
6
): δ (ppm) 14.5, 18.8, 26.8,
H), 3.97 (q, J=7.0 Hz, 2H), 4.84 (s, 1H), 7.11 (d, J=7.2 Hz, 2H),
9.5, 32.6, 36.5, 50.6, 59.6, 103.4, 109.9, 113.5, 126.9, 128.8, 130.5,
46.0, 150.3, 167.0, 194.7.
13
6
.37 (d, J=7.2 Hz, 2H), 9.09 (s, 1H); C NMR (75 MHz, DMSO-d ):
δ (ppm) 14.6, 18.8, 26.9, 29.5, 32.6, 36.2, 50.6, 59.5, 103.5, 110.1,
Ethyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexa-
1
19.1, 130.2, 131.0, 145.8, 147.4, 150.0, 167.1, 194.7.
1
hydroquinoline-3-carboxylate (2): H NMR (500 MHz, CDCl
3
): δ
Methyl4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-
(
1
(
8
1
1
ppm) 0.92 (s, 3H), 1.10 (s, 3H), 1.19 (t, J=7.1 Hz, 3H), 2.16 (d, J=
6.4 Hz, 2H), 2.24–2.29 (Distorted AB system, 2H), 2.41 (s, 3H), 4.07
1
hydroquinoline-3-carboxylate (12): H NMR (300 MHz, DMSO-d
6
): δ
(ppm) 0.84 (s, 3H), 0.99 (s, 3H), 1.97 (d, J=16.0 Hz, 1H), 2.15 (d, J=
q, J=7.1 Hz, 2H), 5.18 (s, 1H), 6.68 (s, 1H), 7.51 (d, J=8.5 Hz, 2H),
16.1 Hz, 1H), 2.28 (s, 3H), 2.37–2.49 (m, 2H), 3.52 (s, 3H), 3.66 (s, 3H),
.09 (d, J=8.5 Hz, 2H); 13C NMR (125 MHz, CDCl
3
): δ (ppm) 14.6,
4
.81 (s, 1H), 6.73 (d, J=7.4 Hz, 2H), 7.05 (d, J=7.4 Hz, 2H), 9.02
9.8, 27.5, 29.8, 33.1, 37.7, 41.3, 51.0, 60.5, 105.3, 111.4, 123.7,
29.4, 145.0, 146.6, 149.6, 154.9, 167.3, 195.9.
13
(s, 1H); C NMR (75 MHz, DMSO-d
6
): δ (ppm) 18.7, 26.9, 29.6,
3
1
2.6, 35.2, 50.7, 51.1, 55.3, 104.0, 110.7, 113.6, 128.7, 140.3, 145.4, 149.7,
57.7, 167.9, 194.7.
Ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylate (4): 1H NMR (300 MHz, DMSO-d
):
δ (ppm) 0.85 (s, 3H), 1.00 (s, 3H), 1.14 (t, J=7.0 Hz, 3H), 1.96 (d, J=
6
Methyl 4-(3-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-
1
hydroquinoline-3-carboxylate (14): H NMR (300 MHz, DMSO-d
6
): δ
1
3
6.0 Hz, 1H), 2.15 (d, J=16.1 Hz, 1H), 2.27 (s, 3H), 2.37–2.49 (m, 2H),
.66 (s, 3H), 3.97 (q, J=7.0 Hz, 2H), 4.79 (s, 1H), 6.73 (d, J=8.3 Hz,
(
ppm) 0.83 (s, 3H), 1.00 (s, 3H), 1.99 (d, J=16.0 Hz, 1H), 2.18 (d, J=
1
1
6.1 Hz, 1H), 2.30 (s, 3H), 2.39–2.49 (m, 2H), 3.53 (s, 3H), 4.85 (s,
H), 7.14–7.16 (m, 2H), 7.25–7.27 (m, 2H), 9.15 (s, 1H); 13C NMR
(
6
75 MHz, DMSO-d ): δ (ppm) 18.8, 26.8, 29.5, 32.6, 36.3, 103.1, 109.9,
1
21.6, 126.8, 129.1, 130.5, 130.6, 146.3, 150.3, 150.5, 167.5, 194.7; MS:
+
m/z 404 (M ).
Substrate recognition site
O
3
. Results and discussion
O
Bronsted basic site
Bronsted acidic site
S
The structure of Brønsted acidic ionic liquid 1,3-disulfonic acid
O
imidazolium hydrogen sulfate was identified by studying its FT-IR,
O
H
1
13
H NMR, C NMR, mass, TG, DTG and XRD spectra. The full details
of FT-IR, 1H NMR, C NMR and mass spectra were reported in the
13
H
Bronsted acidic site
Experimental section.
O
O
In this section, we study FT-IR, 1H NMR, mass, TG, DTG and XRD
spectra of the ionic liquid:
S
N
O
Bronsted basic site
Lewis acidic site
4
The IR spectrum of [Dsim]HSO showed a broad peak at 3100–
H
−1
3
400 cm
related to the OH of the SO
3
H groups. Moreover, two
N
S
−1
−1
peaks observed in 1085 cm
vibrational modes of N\SO
The 1H NMR spectrum of [Dsim]HSO
and 1285 cm
correspond to the
O
Bronsted basic site
Bronsted acidic site
O
2
bond.
O
showed two peaks related
H
4
to the two types of the acidic hydrogens (SO
3
H) in 13.55 and
1
SO
1.95 ppm. To prove that this peak corresponds to the hydrogen of
H in the compound, we also ran the 1H NMR spectra of the
3
Substrate recognition site
starting materials for the preparation of the ionic liquid (i.e., [Dsim]
Cl and H SO ) in DMSO-d wherein the peaks of the acidic hydrogens
of [Dsim]Cl and H SO were observed in 13.34, and 12.54 ppm,
Dual function by the three-functional IL
2
4
6
2
4
respectively. The difference between the peaks of the acidic hydro-
Fig. 2. The structure of [Dsim]HSO
4
.
gens in the compounds confirmed that the peaks observed in 13.55