I. De6i et al. / Tetrahedron Letters 44 (2003) 8307–8310
8309
Scheme 2.
Michael adducts (C-alkylation) instead of O-alkylated
Siyal, C. W.; Duch, D. S.; Nichol, C. A. J. Med. Chem.
1980, 23, 327–329.
7. (a) Furuya, S.; Ohtaki, T. Eur. Pat. Appl. EP. 608565,
1
5
or N-alkylated compounds. The formation of the
Michael adduct is the key to explain the right orienta-
tion of the reaction.
1994; Chem. Abstr. 1994, 121, 205395; (b) Heber, D.;
Heers, C.; Ravens, U. Pharmazie 1993, 48, 537–541.
. Sakuma, Y.; Hasegawa, M.; Kataoka, K.; Hoshina, K.;
Yamazaki, N.; Kadota, T.; Yamaguchi, H. PCT Int.
Appl. WO 9105785, 1989; Chem. Abstr. 1991, 115, 71646.
. Ahluwalia, V. K.; Batla, R.; Khurana, A.; Kumar, R.
Ind. J. Chem. 1990, 29, 1141–1142.
8
In conclusion, we have demonstrated a novel multicom-
ponent reaction in the solid state that offers a simple
and efficient route for the synthesis of highly function-
alized pyrano[2,3-d]pyrimidines and pyrido[2,3-d]-
pyrimidines of potential biological importance in excel-
lent yields. Furthermore, the results delinated above
have demonstrated that microwave assisted multi-
component reactions in the solid state can replace
classical methods allowing easy and rapid access to
novel heterocycles of biological significance with
improved yields.
9
1
0. (a) Cheng, T.; Wang, Y.; Cai, M. Youji. Huaxue. 1988, 8,
250–253; (b) Spada, M. R.; Klein, R. S.; Otter, B. A. J.
Heterocyclic Chem. 1989, 26, 1851–1857; (c) Ahluwalia,
V. K.; Kumar, R.; Khurana, K.; Bhatla, R. Tetrahedron
1
990, 46, 3953–3962; (d) Ahluwalia, V. K.; Bhatla, R.;
Khurana, A.; Kumar, R. Ind. J. Chem. 1990, 29, 1141–
142; (e) Ahluwalia, V. K.; Sharma, H. R.; Tyagi, R.
1
Tetrahedron 1986, 42, 4045–4048; (f) Ahluwalia, V. K.;
Aggarwal, R.; Alauddin, M.; Gill, G.; Khanduri, C. H.
Heterocycles 1990, 31, 129–137; (g) Broom, A. D.; Shim,
J. L.; Anderson, C. L. J. Org. Chem. 1976, 411, 1095–
References
1
. (a) Weber, L.; Illegen, K.; Almstetter, M. Synlett 1999,
66–374; (b) Armstrong, R. W.; Combs, A. P.; Tempest,
P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res.
996, 29, 123–131.
1099; (h) Wamhoff, H.; Muhr, J. Synthesis 1988, 919–
3
922; (i) Hirota, K.; Kuki, H.; Maki, Y. Heterocycles
1994, 37, 563–570; (j) Srivastava, P.; Saxena, A. S.; Ram,
V. J. Synthesis 2000, 541–544.
1
2
3
. Strecker, A. Liebigs. Ann. Chem. 1850, 75, 27–30.
. (a) Shestopalov, A. M.; Emeliyanova, Y. M.; Shestio-
polov, A. A.; Rodinovskaya, L. A.; Niazimbetova, Z. I.;
Evans, D. H. Org. Lett. 2002, 4, 423–425; (b) List, B.;
Castello, C. Synlett 2001, 1687–1689; (c) Nair, V.; Vinod,
A. U.; Rajesh, C. J. Org. Chem. 2001, 66, 4427–4429; (d)
Bagley, M. C.; Cale, J. W.; Bower, J. Chem. Commun.
11. (a) Bhuyan, P. J.; Lekhok, K. C.; Sandhu, J. S. Tetra-
hedron Lett. 1999, 40, 1793–1794; (b) Bhuyan, P. J.;
Borah, H. N.; Lekhok, K. C.; Sandhu, J. S. J. Hetero-
cyclic Chem. 2001, 38, 491–493; (c) Bhuyan, P. J.; Borah,
H. N.; Sandhu, J. S. Tetrahedron Lett. 2002, 43, 895–897.
1
1
2. Compound 4a: mp 210°C; H NMR (300 MHz, CDCl ):
3
l 3.00 (s, 3H), 3.15 (s, 3H), 5.10 (s, 1H), 6.85–7.10 (m,
−
1
+
5
H); IR: 3300, 2195, 1710 cm ; MS: 310 M . CHN
analyses (calcd %): C, 61.93; H, 4.51; N, 18.06
C H N O ) (found %): C, 61.90; H, 4.45; N, 18.00.
2
002, 1682–1683; (e) Cheng, J. F.; Chen, M.; Arthenius,
T.; Nadzen, A. Tetrahedron Lett. 2002, 43, 6293–6296; (f)
Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal,
J. Tetrahedron Lett. 2002, 43, 6485–6488; (g) Bertozzi, F.;
Gustafsson, M.; Olsson, R. Org. Lett. 2002, 4, 3147–
(
16
14
4
3
1
Compound 4b: mp 217°C; H NMR (300 MHz, CDCl ):
3
l 3.05 (s, 3H), 4.95 (s, 1H), 6.90–7.10 (m, 5H); IR: 3310,
−
1
+
2
205, 1715 cm ; MS: 296 M . CHN analyses (calcd %):
3
3
150; (h) Yuan, Y.; Li, X.; Ding, K. Org. Lett. 2002, 4,
309–3311; (i) Bora, U.; Saikia, A.; Boruah, R. C. Org.
C, 60.81, H, 4.05; N, 18.91 (C H N O ) (found %): C,
1
5
12
4
3
1
6
0.75; H, 4.10; N, 18.95. Compound 4c: mp 225°C; H
Lett. 2003, 5, 435–438; (j) Dallinger, D.; Gorobets, N. Y.;
Kappe, C. O. Org. Lett. 2003, 5, 1205–1208.
. Takaya, H.; Murahashi, S. Synlett 2001, 991–994 and
references cited therein.
NMR (300 MHz, CDCl +TFA): l 4.95 (s, 1H), 6.90–7.15
3
−1
+
(
m, 5H); IR: 3325, 2200, 1705 cm ; MS: 282 M . CHN
analyses (calcd %): C, 59.57, H, 3.54; N, 19.85
C H N O ) (found %): C, 59.50; H, 3.55; N, 19.90.
4
5
(
14
10
4
3
. (a) Pourashraf, M.; Delair, P.; Rasmaissen, M. O.;
Greene, A. E. J. Org. Chem. 2000, 65, 6966–6972; (b)
Cossy, J.; Willis, C.; Bellosta, V.; Jalmes, L. S. Synthesis
1
Compound 4d: mp 231°C; H NMR (300 MHz, CDCl ):
3
l 1.25 (t, 3H, J=7.3 Hz), 3.05 (s, 3H), 3.10 (s, 3H), 4.20
(q, 2H, J=7.3 Hz), 4.95 (s, 1H), 6.90–7.20 (m, 5H); IR:
−
1
+
2
002, 951–957.
3345, 1730, 1695 cm ; MS: 357 M . CHN analyses
(calcd %): C, 60.50, H, 5.32; N, 11.76 (C H N O )
6
. (a) Anderson, G. L.; Shim, J. L.; Broom, A. D. J. Org.
Chem. 1976, 41, 1095–1099; (b) Grivaky, E. M.; Lee, S.;
18
19
3
5
(found %): C, 60.50; H, 5.25; N, 11.80.