Paper
CrystEngComm
coordination polymers that control polymerization or
oligomerization.64–68 These studies had revealed that the
polymerization taking place in the nanochannel of coordina-
tion polymers supports unique advantage to control the
structure and orientation of the as-prepared polymer. The
NNU-32 mediated polymerization is different from these poly-
merizations as the reaction is driven by visible light and oc-
curs outside the channel of the MOF. Moreover, the photo-
polymerization could be more precisely controlled, leading to
a very narrow molecular weight distribution. The heteroge-
neous NNU-32 can be easily recovered from the reaction solu-
tion by centrifugation. As evidenced by the PXRD study, the
structure of NNU-32 was maintained after the ATRP reaction,
allowing its reuse in the subsequent reactions (Fig. S3, ESI†).
The recycle experiments revealed that NNU-32 can be reused
for at least three cycles without loss of activity (Fig. S5, ESI†).
6 Y. B. He, B. Li, M. O'Keeffe and B. L. Chen, Chem. Soc. Rev.,
2014, 43, 5618–5656.
7 V. Guillerm, D. W. Kim, J. F. Eubank, R. Luebke, X. F. Liu,
K. Adil, M. S. Lah and M. Eddaoudi, Chem. Soc. Rev.,
2014, 43, 6141–6172.
8 T. R. Cook, Y. R. Zheng and P. J. Stang, Chem. Rev.,
2013, 113, 734–777.
9 O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M.
Eddaoudi and J. Kim, Nature, 2003, 423, 705–714.
10 T. Panda, T. Kundu and R. Banerjee, Chem. Commun.,
2012, 48, 5464–5466.
11 H. C. Zhou and S. Kitagawa, Chem. Soc. Rev., 2014, 43,
5415–5418.
12 L. J. Murray, M. Dincă and J. R. Long, Chem. Soc. Rev.,
2009, 38, 1294–1314.
13 J. R. Li, J. L. Sculley and H. C. Zhou, Chem. Rev., 2012, 112,
869–932.
Conclusions
14 Y. J. Cui, Y. F. Yue, G. D. Qian and B. L. Chen, Chem. Rev.,
2012, 112, 1126–1162.
In summary, a new visible light responsive indium MOF,
NNU-32, has been prepared based on an anthracene deriva-
tive. Remarkably, the long-lived charge generation in the
MOF structure upon visible light irradiation is achieved by
the radical formation of the ligand. We further demonstrated
that NNU-32 could be utilized as a photosensitizer to conduct
a visible-light-induced ATRP reaction for polymer synthesis.
Results show that NNU-32 mediated ATRP for methacrylate
monomers took place in a controllable way, leading to a nar-
row molecular weight distribution and high retention of the
chain-end group. The kinetics study reveals that the reaction
shows characteristics of controlled radical polymerization.
Besides, it has been demonstrated that the MOF mediated
ATRP reaction could be easily controlled by light switching.
The success of MOF mediated photopolymerization exposes
that the design and synthesis of MOF photocatalysts by the
incorporation of chromophores is a feasible method. We fur-
ther anticipate that photoactive MOFs would find more
promising applications in polymer synthesis.
15 Z. C. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43,
5815–5840.
16 N. Ahmad, H. A. Younus, A. H. Chughtai and F. Verpoort,
Chem. Soc. Rev., 2015, 44, 9–25.
17 J. W. Liu, L. F. Chen, H. Cui, J. Y. Zhang, L. Zhang and C. Y.
Su, Chem. Soc. Rev., 2014, 43, 6011–6061.
18 H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi,
Science, 2013, 341, 1230444.
19 S. L. Li and Q. Xu, Energy Environ. Sci., 2013, 6, 1656–1683.
20 T. Zhang and W. B. Lin, Chem. Soc. Rev., 2014, 43,
5982–5993.
21 J. L. Wang, C. Wang and W. B. Lin, ACS Catal., 2012, 2,
2630–2640.
22 R. W. Liang, L. J. Shen, F. F. Jing, W. M. Wu, N. Qin, R. Lin
and L. Wu, Appl. Catal., B, 2015, 162, 245–251.
23 P. Y. Wu, C. He, J. Wang, X. J. Peng, X. Z. Li, Y. L. An and
C. Y. Duan, J. Am. Chem. Soc., 2012, 134, 14991–14999.
24 K. G. M. Laurier, F. Vermoortele, R. Ameloot, D. E. De Vos, J.
Hofkens and M. B. J. Roeffaers, J. Am. Chem. Soc., 2013, 135,
14488–14491.
25 T. Wen, D. X. Zhang and J. Zhang, Inorg. Chem., 2013, 52,
12–14.
26 C. H. Zhang, L. H. Ai and J. Jiang, J. Mater. Chem. A, 2015, 3,
3074–3081.
27 S. Goberna-Ferrón, W. Y. Hernández, B. Rodríguez-García
and J. R. Galán-Mascarós, ACS Catal., 2014, 4, 1637–1641.
28 K. Meyer, M. Ranocchiari and J. A. van Bokhoven, Energy
Environ. Sci., 2015, 8, 1923–1937.
29 J. S. Qin, D. Y. Du, W. Guan, X. J. Bo, Y. F. Li, L. P. Guo,
Z. M. Su, Y. Y. Wang, Y. Q. Lan and H. C. Zhou, J. Am. Chem.
Soc., 2015, 137, 7169–7177.
Acknowledgements
This work is supported by the National Natural Science Foun-
dation of China (21473024 and 21101023) and the Natural Sci-
ence Foundation of Jilin Province (20140101228JC).
Notes and references
1 M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M.
Reineke, M. O'Keeffe and O. M. Yaghi, Acc. Chem. Res.,
2001, 34, 319–330.
2 S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed.,
2004, 43, 2334–2375.
3 O. M. Yaghi, Nat. Mater., 2007, 6, 92–93.
4 O. K. Farha and J. T. Hupp, Acc. Chem. Res., 2010, 43,
1166–1175.
30 M. R. Dubois and D. L. Dubois, Acc. Chem. Res., 2009, 42,
1974–1982.
31 C. Wang, Z. G. Xie, K. E. deKrafft and W. B. Lin, J. Am.
Chem. Soc., 2011, 133, 13445–13454.
5 J. Zhang, S. M. Chen and X. H. Bu, Angew. Chem., Int. Ed.,
2008, 47, 5434–5437.
32 M. Kamigaito, T. Ando and M. Sawamoto, Chem. Rev.,
2001, 101, 3689–3745.
CrystEngComm
This journal is © The Royal Society of Chemistry 2016