JOURNAL OF
POLYMER SCIENCE
ORIGINAL ARTICLE
CONCLUSIONS
16 S. D. Moon, N. S. Lee, S. I. Kang, J. Micromech. Microeng.
2003, 13, 98.
UV-NIL of high refractive index and highly transparent poly-
mers has been successfully realized based on thiol-ene click
chemistry. A novel thiol monomer, BMPF, was designed, that
could provide high refractive index, high transparency, and
good UV-NIL processability. Colorless polythioethers (P1-P3)
were synthesized from BMPF and several ene monomers
under mild thiol-ene click reaction conditions. The P1-P3 thin
films exhibited excellent transmittance of 96% at 400 nm due
to the flexible polymer backbone and the orthogonal structure
at the 9-position of fluorene. The refractive indexes of P1-P3
were high values in the range of 1.5972–1.6382 due to the
incorporation of sulfur atoms and a fluorene-based aromatic
structure. The refractive index increased with an increase in
the sulfur content; P3 with the highest sulfur content
(16.44 wt%) achieved the highest refractive index of 1.6382.
Furthermore, UV-NIL using thiol-ene click chemistry was
developed; the defined P1-P3 nanoimprinting patterns with
various features on the order of 100–500 nm were readily
fabricated without any fractures, which might be a result of
the relatively low Tg due to the flexible polymer backbone.
Consequently, high refractive index and highly transparent
polymers with good UV-NIL processability were developed by
proper monomer and polymer design. This result opens a
new possibility of thiol-ene click chemistry for the develop-
ment of optical materials and their nanoscale fabrication.
17 J. Wang, X. Sun, L. Chen, S. Y. Chou, Appl. Phys. Lett. 1999,
75, 2767.
18 C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49,
1540.
19 A. W. Lowe, Polym. Chem. 2010, 1, 17.
20 M. J. Kade, D. J. Burke, C. J. Hawker, J. Polym, Sci. Part A:
Polym. Chem 2010, 48, 743.
21 D. P. Nair, N. B. Cramer, J. C. Gaipa, M. K. McBride,
E. M. Matherly, R. R. McLeod, R. Shandas, C. N. Bowman, Adv.
Funct. Mater. 2012, 22, 1502.
22 E. C. Hagberg, M. Malkoch, Y. Ling, C. J. Hawker, K. P. Carter,
Nano Lett. 2007, 7, 233.
23 H. Lin, X. Wan, X. Jiang, Q. Wang, J. Yin, Adv. Funct. Mater.
2011, 21, 2960.
24 L. M. Campos, I. Meinel, R. G. Guino, M. Schierhorn,
N. Gupta, G. D. Stucky, C. J. Hawker, Adv. Mater 2008, 20,
3728.
25 L. M. Campos, T. T. Truong, D. E. Shim, M. D. Dimitriou,
D. Shir, I. Meinel, J. A. Gerbec, H. T. Hahn, J. A. Rogers,
C. J. Hawker, Chem. Mater. 2009, 21, 5319.
26 H. Lin, X. Wan, X. Jiang, Q. Wang, J. A. Yin, J. Mater. Chem.
2012, 22, 2616.
27 C. Luo, J. Zuo, Y. Yuan, X. Lin, F. Lin, J. Zhao, Optical Mate-
rials Express 2015, 5, 462.
28 S. Nagayama, B. Ochiai, Polym. J. 2016, 48, 1059.
29 S. D. Bhagat, J. Chatterjee, B. Chen, A. E. Stiegman, Macro-
molecules 2012, 45, 1174.
REFERENCES
30 S. D. Bhagat, E. B. Da Silva Filho, A. E. Stiegman, Macromol.
Mater. Eng. 2015, 300, 580.
1 J. G. Liu, M. Ueda, M. J. Mater. Chem. 2009, 18, 8907.
2 T. Higashihara, M. Ueda, Macromolecules 2015, 48, 1915.
31 K. Nakabayashi, T. Imai, M. C. Fu, S. Ando, T. Higashihara,
M. Ueda, J. Mater. Chem. C 2015, 3, 7081.
3 G. S. Jha, G. Seshadri, A. Mohan, R. K. Khandal, e-Polymer
2007, 120, 1.
32 K. Nakabayashi, T. Imai, M. C. Fu, S. Ando, T. Higashihara,
M. Ueda, Macromolecules 2016, 49, 5849.
4 H. A. Lorentz, Ann. Phys. 1880, 9, 641.
5 L. V. Lorenz, Ann. Phys. 1880, 11, 70.
33 S. Seesukphronrarak, S. Kawasaki, K. Kobori, T. Takata,
J. Polym, Sci., Part A: Polym. Chem 2007, 45, 3073.
6 J. C. Seferis, In Polymer Handbook, 3rd ed., J. Brandrup,
E. H. Immergut Eds., Wiley-Interscience, New York, 1989, p. 271.
34 J. F. Xu, L. Y. Niu, Y. Z. Chen, L. Z. Wu, C. H. Tung,
Q. Z. Yang, Org. Lett. 2014, 16, 4016.
7 J. G. Liu, Y. Nakamura, C. A. Terraza, Y. Shibasaki, S. Ando,
M. Ueda, Macromol. Chem. Phys. 2008, 209, 195.
35 S. Sugawara, Jpn. Kokai Tokkyo Koho JP2011170073, 2011.
36 H. Kim, H. Yeo, M. Goh, B. C. Ku, J. R. Hahn, N. H. You, Eur.
Polym. J. 2016, 75, 303.
8 N. H. You, Y. Suzuki, D. Yorifuji, S. Ando, M. Ueda, Macromol-
ecules 2008, 41, 6361.
37 J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando, M. Ueda,
Polym. J. 2007, 39, 543.
9 M. A. Olshavsky, H. R. Allcock, Macromolecules 1995, 28, 6188.
10 Y. Suzuki, K. Murakami, S. Ando, T. Higashihara, M. Ueda,
J. Mater. Chem. 2011, 21, 15727.
38 N. H. You, N. Fukuzaki, Y. Suzuki, Y. Nakamura,
T. Higashihara, S. Ando, M. Ueda, J. Polym, Sci., Part A: Polym.
Chem 2009, 47, 4428.
11 C. C. Chang, C. C. Chen, C. C. Chou, W. J. Kuo, R. J. Jeng,
J. Macromol, Sci., Part C: Polym. Rev. 2005, 45, 125.
39 J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando, M. Ueda, Mac-
romolecules 2007, 40, 4614.
12 G. Maier, Prog. Polym. Sci. 2001, 26, 3.
13 S. Y. Chou, Proc. IEEE 1997, 85, 652.
40 J. Guo, Adv. Mater. 2007, 19, 495.
14 X. Zhu, Y. Zhang, D. Chandra, S. C. Cheng, J. M. Kikkawa,
S. Yang, Appl. Phys. Lett. 2008, 93, 161911.
41 H. Sun, Microsystem Technologies-Micro-and Nanosystems-
Information Storage and Processing Systems 2015, 21, 1.
15 L. J. Guo, P. R. Krauss, S. Y. Chou, Appl. Phys. Lett. 1997, 71,
1881.
42 F. Reuther, Journal of Photopolymer Science and Technology
2005, 18, 525.
8
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2018