680
J . Org. Chem. 1999, 64, 680-681
Communications
have found that (phenyl)[o-(trimethylsilyl)phenyl]iodonium
triflate (5) generates benzyne quantitatively under mild
conditions.8 This benzyne precursor 5 is stable and involves
the very mild reaction conditions such as neutral medium
and room temperature, giving high yields of the benzyne
adducts. Thus, we have applied the benzyne precursor 5 to
a cyclic alkyne system, namely bicyclo[2.2.1]hept-2-en-5-yne
(6) which can be generated by reaction of a hypervalent
iodine precursor, (phenyl)[3-(trimethylsilyl)bicyclo[2.2.1]-
hept-2,5-dien-2-yl]iodonium triflate (7).
The previous study8 on the benzyne precursor 5 suggests
that the most suitable substrate for the generation of cyclic
alkynes is the â-trimethylsilyl-substituted cyclic vinyliodo-
nium salt. The hypervalent iodine group has an extremely
high leaving ability,9 and the trimethylsilyl group is easily
cleavable by fluoride ion.10 Accordingly, this combination
constructs the alkyne precursor best.11 To prepare trimeth-
ylsilyl-substituted cyclic vinyliodonium triflates, we exam-
ined the Diels-Alder reaction of (phenyl)[(trimethylsilyl)-
ethynyl]iodonium triflate (8) with cyclic dienes, which
provides the very convenient and direct synthesis.
First, [(trimethylsilyl)ethynyl]iodonium triflate 812 was
prepared according to the modified method of Bachi and
Stang by using a hypervalent iodine reagent13 readily
prepared from PhI(OAc)2 and trifluoromethanesulfonic acid
(TfOH) or its anhydride (Tf2O). Treatment of bis(trimeth-
ylsilyl)acetylene with PhI(OAc)2 activated with TfOH or Tf2O
in dichloromethane gave alkynyliodonium triflate 8 in 72-
88% yields.
Next, we examined the Diels-Alder reaction with dienes
by the use of [(trimethylsilyl)ethynyl]iodonium triflate 8
according to the method of Stang.14,15 The reaction of 8 with
cyclopentadiene in acetonitrile proceeded efficiently to give
(phenyl)[3-(trimethylsilyl)bicyclo[2.2.1]hepta-2,5-dien-2-yl]-
A New Hyp er va len t Iod in e P r ecu r sor of a
High ly Str a in ed Cyclic Alk yn e. Gen er a tion
a n d Tr a p p in g Rea ction s of
Bicyclo[2.2.1]h ep t-2-en -5-yn e
Tsugio Kitamura,* Masashi Kotani,
Takanobu Yokoyama, and Yuzo Fujiwara
Department of Chemistry and Biochemistry, Graduate
School of Engineering, Kyushu University, Hakozaki,
Fukuoka 812-8581, J apan
Kenzi Hori
Department of Applied Chemistry and Chemical Engineering,
Yamaguchi University, Tokiwadai, Ube, 755-8611, J apan
Received September 28, 1998
Cyclic alkynes with small rings are of considerable inter-
est in chemistry because of their high strain and reactivity.1
Generally, alkynes bearing more than eight-membered ring
size are stable and isolable compounds, but cycloheptyne,
cyclohexyne, and cyclopentyne are unstable and exist only
as short-lived intermediates. Alkynes with three- and four-
membered rings have not been observed experimentally. As
a consequence, the smallest cyclic alkyne observed experi-
mentally is five-membered cyclopentyne (1), which can be
generated by reaction of 1,2-dibromopentene (2),2 by oxida-
tion of 1,2-bis(hydrazono)cyclopentane (3),2a,3 and by ring
expansion of cyclobutylidenecarbene (4).4 However, the
yields of adducts of cyclopentyne 1 with the trapping agents
are low.2-4 The unexpected side-reactions take place due to
the use of the unstable precursors and the severe reaction
conditions. In addition to the monocycloalkynes, strained
bicycloalkynes have been also reported.5
(7) For recent other reviews and books on hypervalent iodine compounds,
see: (a) Koser, G. F. In The Chemistry of Functional Groups, Supplement
D; Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester, 1983; pp 721-811 and
pp 1265-1351. (b) Ochiai, M. Rev. Heteroatom Chem. 1989, 2, 92-111. (c)
Moriarty, R. M.; Vaid, R. K. Synthesis 1990, 431-447. (d) Varvoglis, A. The
Organic Chemistry of Polycoordinated Iodine; VCH Publishers: New York,
1992. (d) Koser, G. F. In Supplement D2: The Chemistry of Halides, Pseudo-
Halides and Azides; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1995;
pp 1173-1174. (f) Stang, P. J .; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123-
1178. (g) Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic
Press: San Diego, 1997.
A new and excellent precursor for the generation of
strained cyclic alkynes is clearly required, especially one
which is stable, easy to handle, and efficient to generate a
strained cyclic alkyne under mild conditions. In continuation
of our studies on reactive hypervalent iodine reagents,6,7 we
(8) Kitamura, T.; Yamane, M. J . Chem. Soc., Chem. Commun. 1995, 983-
984.
(9) (a) Wiberg, K. B.; Pratt, W. E.; Matturro, M. G. J . Org. Chem. 1982,
47, 2720-2722. (b) Okuyama, T.; Takino, T.; Suede, T. Ochiai, M. J . Am.
Chem. Soc. 1995, 117, 3360-3367.
(10) For a fluoride ion-induced desilylation, see: Cunico, R. F.; Dexhe-
imer, E. M. J . Am. Chem. Soc. 1972, 94, 2868-2869. Cunico, R. F.;
Dexheimer, E. M. J . Organomet. Chem. 1973, 59, 153-160. Himeshima,
Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211-1214. Atanes, N. A.;
Escudero, S.; Pe´rez, D.; Guitia´, E.; Castedo, L. Tetrahedron Lett. 1998, 39,
3039-3040.
(11) The reaction of the corresponding 3-(trimethylsilyl)bicyclo[2.2.1]hept-
2,5-dien-2-yl tosylate with Bu4NF does not give alkyne 6 but takes place
only desilylation. See, Padwa, A.; Wannamaker, M. W. J . Chem. Soc. Chem.
Commun. 1987, 1742-1743.
(12) Bachi, M. D.; Bar-Ner. N.; Crittell, C. M.; Stang, P. J .; Williamson,
B. L. J . Org. Chem. 1991, 56, 3912-3915.
(1) (a) Hoffmann, R. W. Dehydrobenzene and Cycloalkynes; Academic
Press: New York, 1967. (b) Krebs, A. In Chemistry of Acetylenes; Viehe, H.
G., Ed.; Marcel Dekker: New York, 1969; pp 987-1062. (c) Nakagawa, M.
In The Chemistry of the Carbon-Carbon Triple Bond; Patai, S., Ed.;
Wiley: Chichester, 1978; pp 635-712. (d) Greenberg, A.; Liebman, J . F.
Strained Organic Molecules; Academic Press: New York, 1978; pp 133-
138. (e) Krebs, A.; Wilke, J . Top. Curr. Chem. 1983, 109, 189-233. (f) Gleiter,
R.; Merger, R. In Modern Acetylene Chemistry; Stang, P. J ., Diederich, F.,
Eds.; VCH: Weinheim, 1995; pp 285-319.
(2) (a) Wittig, G.; Krebs, A.; Pohlke, R. Angew. Chem. 1960, 72, 324. (b)
Wittig, G.; Pohlke, R. Chem. Ber. 1961, 94, 3276-3284. (c) Wittig, G.;
Weinlich, J .; Wilson, E. Chem. Ber. 1965, 98, 458-470.
(3) Wittig, G.; Krebs, A. Chem. Ber. 1961, 94, 3260-3275.
(4) (a) Erickson, K. L.; Wolinsky, J . Am. Chem. Soc. 1965, 87, 1142-
1143. (b) Fitjer, L.; Modaressi, S. Tetrahedron Lett. 1983, 24, 5495-5498.
(c) Gilbert, J . C.; Baze, M. E. J . Am. Chem. Soc. 1983, 105, 664-665. (e)
Gilbert, J . C.; Baze, M. E. J . Am. Chem. Soc. 1984, 106, 1885-1886.
(5) Gassman, P. G.; Valcho, J . J . J . Am. Chem. Soc. 1975, 97, 4768-
4770. Shahlai, K.; Hart, H. J . Am. Chem. Soc. 1988, 110, 7136-7140.
Komatsu, K.; Aonuma, S.; J inbu, Y.; Tsuji, R.; Hirosawa, C.; Takeuchi, K.
J . Org. Chem. 1991, 56, 195-203.
(13) (a) Kitamura, T.; Matsuyuki, J .; Taniguchi, H. Synthesis 1994, 147-
148. (b) Kitamura, T.; Kotani, M.; Fujiwara, Y. Synthesis 1998, 1416-1418.
(14) (a) Stang, P. J .; Zhdankin, V. V. J . Am. Chem. Soc. 1991, 113, 4571-
4576. (b) Ryan, J . H.; Stang, P. J . J . Org. Chem. 1996, 61, 6162-6165.
(15) Williamson, B. L.; Stang, P. J .; Arif, A. M. J . Am. Chem. Soc. 1993,
115, 2590-2597.
(16) Willey, F. G. Angew. Chem. 1964, 76, 144. Very recently, 2-(trim-
ethylsilyl)cyclohexenyl triflate was reported as a new source of cyclohexyne,
see: Atanes, N.; Escudero, S.; Pe´rez, D.; Guitia´n, E.; Castedo, L. Tetrahedron
Lett. 1998, 39, 3039-3040.
(6) (a) Kitamura, T. J . Synth. Org. Chem. J pn. 1995, 53, 893-905. (b)
Kitamura, T.; Fujiwara, Y. Org. Prep. Proced. Int. 1997, 29, 409-458.
10.1021/jo9819483 CCC: $18.00 © 1999 American Chemical Society
Published on Web 01/20/1999