10.1002/chem.201902557
Chemistry - A European Journal
COMMUNICATION
[15] (a) T. C. Johnson, D. J. Morris, M. Wills, Chem. Soc. Rev. 2010, 39, 81-
88; (b) S. Siddiki, T. Toyao, K. Shimizu, Green Chem. 2018, 20, 2933-
2952.
to afford a Ru-nitrile adduct. Alternatively, the aldimine may
react with free benzylamine to generate the imine by-product.
[16] A. Corma, J. Navas, M. J. Sabater, Chem. Rev. 2018, 118, 1410-1459.
[17] (a) K. N. T. Tseng, A. M. Rizzi, N. K. Szymczak, J. Am. Chem. Soc.
2013, 135, 16352-16355; (b) K. N. T. Tseng, N. K. Szymczak, Synlett
2014, 25, 2385-2389; (c) L. V. A. Hale, T. Malakar, K.-N. T. Tseng, P.
M. Zimmerman, A. Paul, N. K. Szymczak, Acs Catalysis 2016, 6, 4799-
4813; (d) D. Ventura-Espinosa, A. Marza-Beltran, J. A. Mata, Chem.
Eur. J 2016, 22, 17758-17766; (e) I. Dutta, S. Yadav, A. Sarbajna, S.
De, M. Holscher, W. Leitner, J. K. Bera, J. Am. Chem. Soc. 2018, 140,
8662-8666.
In summary, we have developed a straightforward access to
nitrile from amine by employing a commercially available
ruthenium precursor with no need of additional ligand. This
reaction features no oxidant or base and is highly selective with
alkylamine derivatives. Good activity was also observed with
benzyl amine albeit with some imine as by-product. Further
studies to improve the system are currently underway in our
laboratory.
[18] M. Grellier, S. Sabo-Etienne, Dalton Trans. 2014, 43, 6283-6286.
[19] (a) G. Franc, A. Jutand, Dalton Trans. 2010, 39, 7873-7875; (b) L. A.
Perego, R. Blieck, A. Groue, F. Monnier, M. Taillefer, I. Ciofini, L.
Grimaud, Acs Catalysis 2017, 7, 4253-4264.
Acknowledgements
[20] Reproducibility of the reaction selectivity requires well dried amine.
[21] The schlenk valve is put in the open position and connects to an argon
inlet via the vacuum ramp to allow the evacuation of the H2 formed
during the reaction
We gratefully acknowledge the funding from Région Grand Est.
Keywords: dehydrogenation • nitrile • acceptorless
dehydrogenation • ruthenium • homogenous catalysis
[22] The ODBC polar solvent improved the solubility of the active species
compared to toluene for which the formation of a black solid is always
observed during the reaction. 0.2 mL of ODCB was chosen as a
standard volume in part because it allowed better purification of the
product by chromatography compared to larger solvent volumes.
[23] (a) J. A. Widegren, R. G. Finke, J. Mol. Catal. A: Chem 2003, 198, 317-
341; (b) R. H. Crabtree, Chem. Rev. 2012, 112, 1536-1554.
[24] M. Ciaccia, S. Di Stefano, Org. Biomol. Chem. 2015, 13, 646-654.
[25] P. Govindaswamy, Y. A. Mozharivskyj, M. R. Kollipara, Polyhedron
2004, 23, 3115-3123.
[1]
(a) R. C. Larock, in: Comprehensive Organic Transformations: a Guide
to Functional Group Preparations, Wiley-VCH, Weinheim, 1989, pp
819–995. (b) A. J. Fatiadi, in: Preparation and Synthetic Applications of
Cyano Compounds, (Eds.: S. Patai, Z. Rappoport), Wiley-VCH, New
York, 1983.
[2]
[3]
[4]
(a) F. F. Fleming, Nat. Prod. Rep. 1999, 16, 597-606; (b) F. F. Fleming,
L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook, J. Med. Chem. 2010, 53,
7902-7917.
[26] G. Albertin, S. Antoniutti, J. Castro, J. Organomet. Chem. 2010, 695,
574-579.
A. Kleemann, J. Engel, B. Kutscher, D. Reichert, in Pharmaceutical
Substance: Synthesis Patents, Applications, 4th edn., Georg Thieme
Verlag, Stuttgart, 2001
Pollak, P.; Romeder, G.; Hagedorn, F.; Gelbke, H.-P. Nitriles. In
Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim,
Germany, 2012
[5]
[6]
T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1884, 17, 1633–1635.
K. W. Rosenmund, E. Struck, Ber. Dtsch. Chem. Ges. 1919, 2, 1749–
1756
[7]
[8]
G. B. Yan, Y. Zhang, J. B. Wang, Adv. Synth. Catal. 2017, 359, 4068-
4105.
(a) V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299-5358; (b)
T. Najam, S. S. A. Shah, K. Mehmood, A. U. Din, S. Rizwan, M. Ashfaq,
S. Shaheen, A. Waseem, Inorg. Chim. Acta 2018, 469, 408-423.
Sheldon, R. A.; Kochi, J. K. in Metal-Catalyzed Oxidations of Organic
Compounds; Academic Press: San Diego, 1981; pp 387-397
[9]
[10] M. T. Schumperli, C. Hammond, I. Hermans, Acs Catalysis 2012, 2,
1108-1117.
[11] (a) J. Kim, H. J. Kim, S. Chang, Angew. Chem. Int. Ed. 2012, 51,
11948-11959; (b) R. Ray, A. S. Hazari, G. K. Lahiri, D. Maiti,
Chemistry-an Asian Journal 2018, 13, 2138-2148.
[12] (a) F. Porta, C. Crotti, S. Cenini, G. Palmisano, J. Mol. Catal. 1989, 50,
333-341; (b) W. P. Griffith, B. Reddy, A. G. F. Shoair, M. Suriaatmaja, A.
J. P. White, D. J. Williams, J. Chem. Soc., Dalton Trans. 1998, 2819-
2825; (c) S. Yamazaki, Y. Yamazaki, Bull. Chem. Soc. Jpn. 1990, 63,
301-303; (d) S. Aiki, A. Taketoshi, J. Kuwabara, T.-a. Koizumi, T.
Kanbara, J. Organomet. Chem. 2011, 696, 1301-1304; (e) J. Kim, S. S.
Stahl, Acs Catalysis 2013, 3, 1652-1656.
[13] (a) G. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110, 681-703;
(b) C. Gunanathan, D. Milstein, Science 2013, 341; (c) C. Chen, F.
Verpoort, Q. Y. Wu, RSC Advances 2016, 6, 55599-55607; (d) P.
Pandey, I. Dutta, J. K. Bera, Proc. Natl. Acad. Sci., India, Sect. A Phys.
Sci. 2016, 86, 561-579; (e) R. H. Crabtree, Chem. Rev. 2017, 117,
9228-9246.
[14] D. L. J. Broere, Physical Sciences Reviews 2018, 3.
This article is protected by copyright. All rights reserved.