Macromolecules, Vol. 35, No. 12, 2002
Electrophilic Reactivity of Carbocations 4615
Ta ble 3. Ra te Con sta n ts a n d Activa tion P a r a m eter s for th e Rea ction s of th e Ben zh yd r yl Ca tion s 1a +,b+ w ith Allylsila n es
in CH2Cl2
Ar2CH+X-
nucleophile
k/(-70 C°) L mol-1 s-1
∆H‡/kJ mol-1
∆S‡/J mol-1 K-1
-
1a GaCl4-
H2CdCH-CH2-SiPh3
H2CdCH-CH2-SiPh3
H2CdCH-CH2-SiClMe2
H2CdCH-CH2-SiClMe2
H2CdCH-CH2-SiClMe2
391 ( 23
385 ( 19
24.6 ( 2.3
25.6 ( 1.3
19.9 ( 0.7
20.26 ( 1.39
18.68 ( 0.89
16.83 ( 1.38
19.98 ( 0.57
19.76 ( 0.61
-92.4 ( 6.7
-100.3 ( 4.2
-132.3 ( 6.4
-116.4 ( 2.6
-119.6 ( 2.7
1b GaCl4-
1a GaCl4-
1b GaCl4-
1b Ti2Cl9
Ta ble 4. Ra te Con sta n ts (L m ol-1 s-1) for th e Rea ction s of
th e Ben zh yd r yl Ca tion s 1a +,b+ w ith Silyl En ol Eth er s in
Aceton itr ile a n d Aceton itr ile/CH2Cl2 (1/3 v/v)a
than 30%, even when the rate constants under consid-
eration are greater than 108 L mol-1 s-1. We can
conclude, therefore, that macromolecular carbocations
with Mn ∼ 2400 and low molecular weight analogues
do not differ in reactivity with the consequence that the
high kp values reported for the polymerization of iso-
butylene are real.
1a
1b
TMSOCP TMSOCH TMSOCP TMSOCH
CH3CN
4.23 × 108 1.15 × 108
CH3CN/CH2Cl2 3.56 × 108 1.26 × 108 4.62 × 108 1.60 × 108
(R)
(0.997)
(0.9996)
(0.994)
(0.9996)
Su p p or tin g In for m a tion Ava ila ble: 1H and 13C NMR
spectra of II and III and tables of rate constants for reactions
of 1a + and 1b + with allylchlorodimethylsilane and allyltri-
phenylsilane in CH2Cl2. This material is available free of
a
TMSOCP ) 1-trimethylsilyloxycyclopentene; TMSOCH
)
1-trimethylsilyloxycyclohexene.
Refer en ces a n d Notes
(1) (a) Plesch, P. H. Prog. React. Kinet. 1993, 18, 30. (b) Plesch,
P. H. Macromolecules 2001, 34, 1143.
(2) (a) Plesch, P. H. Philos. Trans. R. Soc. London, Ser. A. 1993,
342, 469. (b) Magagnini, P. L.; Cesca, S.; Giusti, P.; Priola,
A.; DiManna, M. Makromol. Chem. 1977, 178, 2235. (c)
Marek, M.; Chmelir, M. J . Polym. Sci. 1968, 177, 3225. (d)
Taylor, R. B.; Williams, F. J . Am. Chem. Soc. 1969, C22, 177.
(e) Roth, M.; Mayr, H. Macromolecules 1996, 29, 6104. (f)
Schlaad, H.; Kwon, Y.; Sipos, L.; Faust, R.; Charleux, B.
Macromolecules 2000, 33, 8225.
(3) This specification was added at the request of one of the
reviewers. In our view, however, there is hardly a difference
between kp( and kp+. See: Mayr, H. Cationic Polymerizations;
Matyjaszewski, K., Ed.; Marcel Dekker: New York, 1996; pp
87-91.
(4) (a) Vairon, J . P.; Rives, A.; Bunel, C. Macromol. Chem.,
Macromol. Symp. 1992, 60, 97. (b) De Sorgo, M.; Pepper, D.
C.; Szwarc, M. J . Chem. Soc., Chem. Commun. 1973, 13, 419.
(c) Lorimer, J . P.; Pepper, D. C. Proc. R. Soc. London, Ser. A
1976, 351, 551.
(5) (a) Reinhardt, C. Solvents and Solvent Effects in Organic
Chemistry; VCH Verlagsgesellschaft: Weinheim, 1988; p 107.
(b) Schneider, R.; Mayr, H.; Plesch, P. H. Ber. Bunsen-Ges.
Phys. Chem. 1987, 91, 1369.
(6) (a) Schneider, R.; Mayr, H.; Schade, C.; Bartl, J .; Bederke,
R. J . Am. Chem. Soc. 1990, 112, 4446. (b) Hagen, G.; Mayr,
H. J . Am. Chem. Soc. 1991, 113, 4954. (c) Mayr, H.; Basso,
N.; Hagen, G. J . Am. Chem. Soc. 1992, 114, 3060.
(7) Mayr, H.; Patz, M. Angew. Chem., Int. Ed. Engl. 1994, 33,
938.
F igu r e 4. A typical exponential decay of the benzhydryl
cations in a reaction with silyl enol ethers (1-trimethylsilyl-
oxycyclohexene ([TMSOCH] ) 7.451 × 10-3 M).
well as the two radicals are assumed to possess identical
molar absorption coefficients, respectively.
(8) (a) Schneider, R.; Mayr, H.; Grabis, U. J . Am. Chem. Soc.
1990, 112, 4460. (b) Patz, M.; Mayr, H.; Bartl, J .; Steenken,
S. Angew. Chem., Int. Ed. Engl. 1995, 34, 490. (c) Mayr, H.
In Ionic Polymerizations and Related Processes; Puskas, J .
E., et al., Eds.; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 1999; pp 99-115.
The pseudo-first-order decay of the benzhydryl cation
absorption in the presence of different concentration of
1-trimethylsiloxycyclohexene and 1-trimethylsiloxy-
cyclopentene was observed; a typical decay plot is shown
in Figure 4. These plots were fitted with an exponential
function to determine the rate of reaction. The second-
order rate constants listed in Table 4 were determined
by plotting the observed rates (at five different concen-
tration of 1-trimethylsiloxycyclohexene or 1-trimethyl-
siloxycyclopentene) as a function of the concentration
of the nucleophile. In accordance with the results of
previous investigations, the change from acetonitrile to
acetonitrile/dichloromethane solvent had only little
influence on the reactivity of the carbocation.5 More
importantly, however, the rate constants determined for
the ditolylcarbenium ion 1b+ differ from those of the
analogous polymer-bound carbenium ion 1a + by less
(9) Roth, M.; Mayr, H. Angew. Chem., Int. Ed. Engl. 1995, 34,
2250.
(10) Sipos, L.; Faust, R., to be submitted to Macromolecules.
(11) Roth, M.; Mayr, H.; Faust, R. Macromolecules 1996, 29, 6110.
(12) (a) Das, P. K. Chem. Rev. 1993, 93, 119. (b) McClelland, R.
A. Tetrahedron 1996, 52, 6823.
(13) Bartl, J .; Steenken, S.; Mayr, H.; McClelland, R. A. J . Am.
Chem. Soc. 1990, 112, 6918.
(14) Hadjikyriacou, S.; Fodor, Zs.; Faust, R. J . Macromol. Sci.
1995, A32, 1137.
(15) Bae, Y. C.; Kim, I.-J .; Faust, R. Polym. Bull. (Berlin) 2000,
44, 453.
(16) Effenberg, F.; Sohn, E.; Epple, G. Chem. Ber. 1983, 116, 1195.
MA0120299