10.1002/anie.201712834
Angewandte Chemie International Edition
COMMUNICATION
[7] a)T. Dieckmann, E. Suzuki, G. K. Nakamura, J. Feigon, Rna
1996, 2, 628‐640; b)R. Mo, T. Jiang, Z. Gu, Angew. Chem., Int. Ed. 2014,
126, 5925‐5930; c)M. Sassanfar, J. W. Szostak, Nature 1993, 364, 550.
[8] a)S. Dhiman, A. Jain, S. J. George, Angew. Chem., Int. Ed. 2017,
129, 1349‐1353; b)A. Ojida, H. Nonaka, Y. Miyahara, S. i. Tamaru, K.
Sada, I. Hamachi, Angew. Chem., Int. Ed. 2006, 118, 5644‐5647.
[9] a)S. B. Korch, J. M. Stomel, M. A. León, M. A. Hamada, C. R.
Stevenson, B. W. Simpson, S. K. Gujulla, J. C. Chaput, ACS Chem. Biol.
2012, 8, 451‐463; b)D. Ishii, K. Kinbara, Y. Ishida, N. Ishii, Nature 2003,
423, 628; c)S. M. Butterfield, M. L. Waters, J. Am. Chem. Soc. 2003, 125,
9580‐9581.
of NP1 and NP2 likely originate from their chiralities, which
minimally affect their ability to differentiate ATP and ADP,
evidenced by macroscopic phase transition during ATP/ADP
cycle (Figure S19) and cellular experiments (Figure S9 and
S10). Systematically shortening the lengths of NP1 or NP2
results in four more nucleopeptides (NP3 to NP6, Schemes S2
and S3) that differentiate ATP and ADP via either precipitation or
gelation (Figures S21 and S24). Mutation of D-lysine in NP1 to
D-aspartic acid completely removes the ability of nucleopeptide
for sequestering ATP or ADP, while mutating the D-lysine to D-
arginine slightly changes the sequestering ability (Scheme S4
and Figure S25 and S26). These results indicate that the
efficacy of the assemblies of nucleopeptides for sequestering
ATP depends more on the length than on the chirality and more
on self-assembling ability than on the number of charges of the
nucleopeptides.
[10]
a)H.‐W. Rhee, H.‐Y. Choi, K. Han, J.‐I. Hong, J. Am.
Chem. Soc. 2007, 129, 4524‐4525; b)C. Li, M. Numata, M. Takeuchi, S.
Shinkai, Angew. Chem., Int. Ed. 2005, 44, 6371‐6374; c)D. H. Lee, S. Y.
Kim, J. I. Hong, Angew. Chem., Int. Ed. 2004, 43, 4777‐4780.
[11] a)Y. Kurishita, T. Kohira, A. Ojida, I. Hamachi, J. Am. Chem.
Soc. 2010, 132, 13290‐13299; b)A. Ojida, S.‐k. Park, Y. Mito‐oka, I.
Hamachi, Tetrahedron Lett. 2002, 43, 6193‐6195.
[12]
H. M. Wang, Z. Q. Q. Feng, A. Lu, Y. J. Jiang, H. Wu, B.
In conclusion, illustrating the use of assemblies of
nucleopeptides for selectively sequestering ATP in complex
conditions, this work provides a novel approach to modulate the
functions of ATP in cells, agreeing with the notion that locally
increasing the concentration of small molecules[29] would be a
powerful strategy for modulating biological processes. In
essence, the use of the interconversion of ATP to ADP to control
the dynamics and filaments of NP1 mimics the actin filament
formation, in which ATP activates G-actin polymerization and
hydrolysis of ATP to ADP destabilizes the actin filament.[30]
Thus, the reversible morphology transition of nucleopeptide
during ATP/ADP cycle, which controlled by counteracting
enzymes, may act as a starting point for mimicking self-
assembly/disassembly process of actin. These findings not only
provide an alternative strategy for potentially targeting
metabolism of cancer cells by assemblies of small molecules,[7b,
Xu, Angew. Chem. Int. Ed. 2017, 56, 7579‐7583.
[13]a)P. Lohse, B. Oberhauser, B. Oberhauser‐Hofbauer, G.
Baschang, A. Eschenmoser, Croat. Chem. Acta 1996, 69, 535‐562; b)M.
Egholm, O. Buchardt, P. E. Nielsen, R. H. Berg, J. Am. Chem. Soc. 1992,
114, 1895‐1897.
[14]
G. N. Roviello, E. Benedetti, C. Pedone, E. M. Bucci,
Amino Acids 2010, 39, 45‐57.
[15]a)X. Li, Y. Kuang, H. C. Lin, Y. Gao, J. Shi, B. Xu, Angew. Chem.,
Int. Ed. 2011, 50, 9365‐9369; b)G. M. Peters, J. T. Davis, Chem. Soc. Rev.
2016, 45, 3188‐3206; c)O. Berger, L. Adler‐Abramovich, M. Levy‐Sakin,
A. Grunwald, Y. Liebes‐Peer, M. Bachar, L. Buzhansky, E. Mossou, V.
T. Forsyth, T. Schwartz, Nat. Nanotechnol. 2015, 10, 353‐360; d)C. J.
Serpell, M. Barłóg, K. Basu, J. F. Fakhoury, H. S. Bazzi, H. F. Sleiman,
Mater. Horiz. 2014, 1, 348‐354; e)P. Liu, R. Ni, A. K. Mehta, W. S.
Childers, A. Lakdawala, S. V. Pingali, P. Thiyagarajan, D. G. Lynn, J.
Am. Chem. Soc. 2008, 130, 16867‐16869.
[16]
a)U. Diederichsen, Angew. Chem., Int. Ed. 1996, 35, 445‐
448; b)J. P. Vernille, L. C. Kovell, J. W. Schneider, Bioconjugate Chem.
2004, 15, 1314‐1321; c)Y. Ura, J. M. Beierle, L. J. Leman, L. E. Orgel, M.
R. Ghadiri, Science 2009, 325, 73‐77.
[17]a)X. Li, Y. Kuang, J. Shi, Y. Gao, H.‐C. Lin, B. Xu, J. Am. Chem.
Soc. 2011, 133, 17513‐17518; b)A. Leonidova, C. Foerster, K. Zarschler, M.
Schubert, H.‐J. Pietzsch, J. Steinbach, R. Bergmann, N. Metzler‐Nolte,
H. Stephan, G. Gasser, Chem. Sci. 2015, 6, 5601‐5616.
31]
but also extend the supramolecular assemblies, which are
bountiful from the development of gelators,[32] as an effective
entities for recognizing cellular bioactive molecules.
[18]
D. Yuan, J. Shi, X. Du, N. Zhou, B. Xu, J. Am. Chem. Soc.
Acknowledgements
2015, 137, 10092‐10095.
[19]
a)G. M. Peters, L. P. Skala, J. T. Davis, J. Am. Chem. Soc.
This work was partially supported by NIH (CA142746), NSF
(DMR-1420382) and W. M. Keck Foundation. ZF thanks the
Dean’s fellowship.
2015, 138, 134‐139; b)T. Kato, N. Mizoshita, K. Kishimoto, Angew.
Chem., Int. Ed. 2006, 45, 38‐68; c)T. Kato, Science 2002, 295, 2414‐
2418; d)T. Kato, H. Kihara, U. Kumar, T. Uryu, J. M. Fréchet, Angew.
Chem., Int. Ed. 1994, 33, 1644‐1645; e)J.‐M. Lehn, Chem. Soc. Rev. 2007,
36, 151‐160; f)K. Ariga, T. Kunitake, Acc. Chem. Res. 1998, 31, 371‐378;
g)M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D.
A. Driver, R. H. Berg, S. K. Kim, B. Norden, P. E. Nielsen, Nature 1993,
365, 566‐568.
Keywords: self-assembly • nucleopeptide • enzyme switch •
targeting metabolism • hydrogel
[1] O. Warburg, Science 1956, 123, 309‐314.
[20]
[21]
J. Buttrey, A. Jones, R. Walker, Tetrahedron 1975, 31, 73‐75.
H. Wang, Z. Feng, A. Lu, Y. Jiang, H. Wu, B. Xu, Angew.
[2] F. Lipmann, Adv. Enzymol. Relat. Areas Mol. Biol 1941, 1, 99‐162.
[3] R. J. DeLange, R. G. Kemp, W. D. Riley, R. A. Cooper, E. G.
Krebs, J. Biol. Chem. 1968, 243, 2200‐2208.
Chem., Int. Ed. 2017.
[22]
[23]
R. K. Crane, A. Sols, J. Biol. Chem. 1953, 203, 273‐292.
S. Okinaka, H. Kumagai, S. Ebashi, H. Sugita, H. Momoi,
[4] a)M. Leist, B. Single, A. F. Castoldi, S. Kühnle, P. Nicotera, J.
Exp. Med. 1997, 185, 1481‐1486; b)M. Bours, E. Swennen, F. Di Virgilio,
B. Cronstein, P. Dagnelie, Pharmacol. Ther. 2006, 112, 358‐404.
[5] a)Q. Yan, Y. Zhao, Chem. Sci. 2015, 6, 4343‐4349; b)G. Yu, J.
Zhou, J. Shen, G. Tang, F. Huang, Chem. Sci. 2016, 7, 4073‐4078; c)R.
Mo, T. Jiang, R. DiSanto, W. Tai, Z. Gu, Nat. Commun. 2014, 5, 3364;
d)S. L. Tobey, B. D. Jones, E. V. Anslyn, J. Am. Chem. Soc. 2003, 125,
4026‐4027; e)N. Busschaert, C. Caltagirone, W. Van Rossom, P. A.
Gale, Chem. Rev. 2015, 115, 8038‐8155.
Y. Toyokura, Y. Fujie, Archives of neurology 1961, 4, 520‐525.
[24]
161‐214.
[25]
G. B. Fields, R. L. Noble, Chem. Biol. Drug Des. 1990, 35,
L. Whitmore, B. Wallace, Nucleic Acids Res. 2004, 32,
W668‐W673.
[26]
2002, 2, 48.
[27]
M. M. Gottesman, T. Fojo, S. E. Bates, Nat. Rev. Cancer
M. W. Gorman, E. O. Feigl, C. W. Buffington, Clin. Chem.
[6] D. E. Huizenga, J. W. Szostak, Biochemistry 1995, 34, 656‐665.
2007, 53, 318‐325.
This article is protected by copyright. All rights reserved.