7016
M. U. Raja et al. / Tetrahedron Letters 50 (2009) 7014–7017
Table 1
corresponding alcohol was achieved over a period of 24 h (entry 3)
and that for 4-chloro acetophenone was 98%. Similarly, 2-buta-
none, 2-pentanone and 3-pentanone (entries 10–12) underwent
hydrogenation to afford the corresponding alcohols in 70%, 73%
and 71% conversions, respectively, in 10 h and achieved maximum
conversions in 24 h. Interestingly, this catalyst shows excellent
activity for the conversions of six-, seven- and eight-membered
cyclic ketones (entries 5–9) to their corresponding alcohols with
88% conversion in the case of cyclopentanone and conversions
98% in case of cyclohexanone, 3-methyl cyclohexanone, cyclohep-
tanone and cyclooctanone.
In conclusion, we have demonstrated a facile and general syn-
thetic route to rhodium(III) NCN pincer complexes via direct cyclo-
metalation. The synthesized rhodium(III) pincer complexes are air
stable and composed of two six-membered metallacycles with
reduced bond angle strain around rhodium. The X-ray crystal
structure of complex 1a shows an octahedral geometry around
rhodium(III) ion with little distortion. An initial foray into the
utility of the complex 1a demonstrates its ability to form active
catalytic species for use in transfer hydrogenation of ketones.
Catalytic transfer hydrogenation of ketones using complex 1a/iPrOH/KOHa
Entry
1
Ketone
Time (h)
Conversion (%)
TON
O
10/24
94/99
188/198
O
2
3
10/24
10/24
82/98
69/80
164/196
138/160
Cl
O
Me
O
O
4
5
10/24
10/24
83/88
72/88
166/176
144/176
Acknowledgements
We gratefully acknowledge financial support from the Depart-
ment of Science and Technology (DST Ref. No. SR/S1/IC-03/2007)
New Delhi, India. M.U.R. thanks DST for the award of Junior Re-
search Fellowship (JRF). We thank Department of Chemistry, IIT-
Madras, Chennai, for providing X-ray data.
O
O
O
Supplementary data
6
10/24
95/99
190/198
Supplementary data associated with this article can be found, in
References and notes
7
8
10/24
10/24
93/99
89/98
186/198
178/196
1. Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750–3781.
2. van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759–1792.
3. Gerisch, M.; Krumper, J. R.; Bergman, R. G.; Tilley, T. D. Organometallics 2003,
22, 47–58.
4. Slagt, M. Q.; van Zwieten, D. A. P.; Moerkerk, A. J. C. M.; Gebbink, R. J. M. K.; van
Koten, G. Coord. Chem. Rev. 2004, 248, 2275–2282.
5. Yoon, M. S.; Ryu, D.; Kim, J.; Ahn, K. H. Organometallics 2006, 25, 2409–2411.
6. Pugh, D.; Danopoulos, A. A. Coord. Chem. Rev. 2007, 251, 610–641.
7. Nishiyama, H. Chem. Soc. Rev. 2007, 36, 1133–1141.
Me
O
8. Ryabov, A. D. Chem. Rev. 1990, 90, 403–424.
9. Steenwinkel, P.; Gossage, R. A.; van Koten, G. Chem. Eur. J. 1998, 4, 759–762.
10. Morales-Morales, D.; Redon, R.; Yung, C.; Jensen, C. M. Chem. Commun. 2000,
1619–1620.
11. Singleton, J. T. Tetrahedron 2003, 59, 1837–1857.
12. Olsson, D.; Nilsson, P.; Masnaouy, M. E.; Wendt, O. F. Dalton Trans. 2005, 1924–
1929.
13. Bedford, R. B.; Betham, M.; Blake, M. E.; Coles, S. J.; Draper, S. M.; Hursthouse,
M. B.; Scully, P. N. Inorg. Chim. Acta 2006, 359, 1870–1878.
14. Yoon, M. S.; Ramesh, R.; Kim, J.; Ryu, D.; Ahn, K. H. J. Organomet. Chem. 2006,
691, 5929–5934.
15. Bäckvall, J. E. J. Organomet. Chem. 2002, 652, 105–111.
16. Jensen, C. M. Chem. Commun. 1999, 2443–2449.
17. Dani, P.; Karlen, T.; Gossage, R. A.; Gladiali, S.; van Koten, G. Angew. Chem., Int.
Ed. 2000, 39, 743–745.
18. Oakley, S. H.; Coogan, M. P.; Arthur, R. J. Organometallics 2007, 26, 2285–2290.
19. Poyatos, M.; Mata, J. A.; Falomir, E.; Crabtree, R. H.; Peris, E. Organometallics
2003, 22, 1110–1114.
20. Amoroso, D.; Jabri, A.; Yap, G. P. A.; Gusev, D. G.; Santos, E. N. S.; Fogg, D. E.
Organometallics 2004, 23, 4047–4054.
21. Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239–2246.
22. Deng, H.; Yu, Z.; Dong, J.; Wu, S. Organometallics 2005, 24, 4110–4112.
23. Maclnnis, M. C.; MacLean, D. F.; Lundgren, R. J.; McDonald, R.; Turculet, L.
Organometallics 2007, 26, 6522–6525.
24. Zeng, F.; Yu, Z. Organometallics 2008, 27, 2898–2901. 2009, 28, 1855–1862.
25. Zhao, M.; Yu, Z.; Yan, S.; Li, Y. J. Organomet. Chem. 2009, 694, 3068–3075.
26. Albrecht, M.; Crabtree, R. H.; Mata, J.; Peris, E. Chem. Commun. 2002, 32–33.
27. Yang, L.; Kruger, A.; Neels, A.; Albrecht, M. Organometallics 2008, 27, 3161–
3171.
O
9
10
11
12
10/24
10/24
10/24
10/24
88/98
70/88
73/89
71/88
176/196
140/176
146/178
142/176
O
O
O
a
Experimental conditions: reactions were carried out at 82 °C using catalyst
(0.01 mmol), KOH (0.025 mmol) and ketone (2 mmol) in 5 mL of iPrOH (catalyst/
ketone/KOH ratio = 1/200/2.5); conversions were determined by GC or GC–MS
analysis by comparison with authentic samples; TON = mol of product/mol of
catalyst.
28. Mas-Marz, E.; Poyatos, M.; Sana, M.; Peris, E. Organometallics 2004, 23, 323–325.