6858 J . Org. Chem., Vol. 66, No. 21, 2001
Cantrill et al.
interactions retains, under the appropriate conditions,
the capacity to ‘heal’ itself, reforming those bonds that
were broken under the application of mechanical stress.
Conversely, no correspondingly simple repair mechanism
exists for covalent polymers. Second, changes in temper-
ature should affect6 directly (and reversibly) the degree
of polymerization (DP) exhibited by a supramolecular
polymer, and in turn, may be used to attenuate bulk
properties such as viscosity and/or rheology. In contrast,
although potentially significant,7 temperature effects
upon covalent polymers are generally less dramatic and
are rarely8 utilized in order to alter, reversibly, the degree
of polymerization.
Although both (i) metal-ligand,6,9 and (ii) π-π stack-
ing10 interactions have been utilized as the ‘glue’ with
which monomers have been strung together to form
supramolecular polymers, hydrogen bonding interactions
have been exploited5,11-15 far more widely. This prefer-
F igu r e 2. A schematic representation depicting the formation
of a threaded 1:1 complex (a pseudorotaxane) between two
complementary species wherein the cavity of a suitably sized
ring is skewered by a linear rod.
ence arises as a consequence of the easily tunable, and
therefore favorable, thermodynamic and kinetic param-
eters associated with hydrogen bonding interactions.
Whereas the reversibility of some metal-ligand interac-
tions is limited, and the strength of π-π stacking
interactions is not sufficient enough to produce polymers
with high DPs, hydrogen bonding interactions can be
fine-tuned to deliver the desired properties. Although
single,11 double,12 and triple13 hydrogen bond manifolds
have been employed in the construction of supramolecu-
lar polymers, the most successful has been that involving
a quadruple14 couple. Meijer and co-workers have ex-
ploited the strong dimerization16 of 2-ureido-4-pyrimidone
derivatives, with Ka values in excess of 106 M-1 in CHCl3,
for the reversible formation14 of hydrogen-bonded supra-
molecular polymers and networks.
Rather than the simple face-to-face association (vide
supra) of monomers, however, more complex topological
interactions may be contrived. The concept (Figure 2) of
threading a rod-shaped molecule through the macrocyclic
cavity of another ring-shaped onesto create17 an inter-
woven host-guest complex (often referred to as a
pseudorotaxane18)scan be applied to the propagation step
of a supramolecular polymerization. Covalently coupling
the two mutually recognizing components to one an-
other19 affords (Figure 3) a self-complementary mono-
(6) The degree of polymerization (DP) depends critically upon the
association constant (Ka) for two monomer units (see: Michelsen, U.;
Hunter, C. A. Angew. Chem., Int. Ed. 2000, 39, 764-767) and can be
approximated by using the following expression: DP ≈ x(Ka[mono-
mer]). Consequently, since Ka ) (T∆S - ∆H)/RT, changing the
temperature can alter dramatically the value of Ka, and hence also
that of DP.
(7) For recent examples of thermoresponsive polymers, see: (a)
Everlof, G. J .; J aycox, G. D. Polymer 2000, 41, 6527-6536. (b) Bignotti,
F.; Penco, M.; Sartore, L.; Peroni, I.; Mendichi, R.; Casolaro, M.;
D’Amore, A. Polymer 2000, 41, 8247-8256. (c) Pan, H.-Z.; Yan, Y.;
Tang, Li.; Wu, Z.-Q.; Li, F.-M. Macromol. Rapid Commun. 2000, 21,
567-573. (d) Kurisawa, M.; Yokoyama, M.; Okano, T. J . Controlled
Release 2000, 69, 127-137. (e) Kim, S. Y.; Cho, S. M.; Lee, Y. M.; Kim,
S. J . J . Appl. Polym. Sci. 2000, 78, 1381-1391.
(8) The exception to this statement relates to equilibrium polymer-
izations, in which dynamic covalent chemistry is employed for the
reversible formation of covalently bonded polymers. For a general
background on this topic, see: (a) Sawada, H. J . Macromol. Sci. Rev.
Macromol. Chem. 1972, C8, 235-288. For specific examples describing
how temperature effects can be used to control the DP in a given
polymer system, see: (b) Chikaoka, S.; Takata, T.; Endo, T. Macro-
molecules 1991, 24, 6557-6562. (c) Marsella, M. J .; Maynard, H. D.;
Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1101-1103. (d)
Lowe, T. L.; Tenhu, H. Macromolecules 1998, 31, 1590-1594.
(9) (a) Constable, E. C. Chem. Commun. 1997, 1073-1080. (b) Kelch,
S.; Rehahn, M. Macromolecules 1997, 30, 6185-6193. (c) Kelch, S.;
Rehahn, M. Macromolecules 1999, 32, 5818-5828. (d) Gardner, M.;
Guerin, A. J .; Hunter, C. A.; Michelsen, U.; Rotger, C. New J . Chem.
1999, 309-316. (e) Wojaczynski, J .; Latos-Grazynski, L. Coord. Chem.
Rev. 2000, 204, 113-171. (f) Ogawa, K.; Kobuke, Y. Angew. Chem.,
Int. Ed. 2000, 39, 4070-4073. (g) Ellis, W. W.; Schmitz, M.; Arif, A.
A.; Stang, P. J . Inorg. Chem. 2000, 39, 2547-2557. In contrast with
these metallo-supramolecular polymers, which exhibit macromolecular
properties in solution, much research has been done on the crystal
engineering of solid-state coordination networks that are also referred
to as ‘polymers’. See: (h) Hirsch, K. A.; Wilson, S. R.; Moore, J . S. Inorg.
Chem. 1997, 36, 2960-2968. (i) Blake, A. J .; Champness, N. R.;
Hubberstey, P.; Li, W. S.; Withersby, M. A.; Schroder, M. Coord. Chem.
Rev. 1999, 183, 117-138. (j) Shimizu, G. K. H.; Enright, G. D.; Rego,
G. S.; Ripmeester, J . A. Can. J . Chem. 1999, 77, 313-318. (k) Carlucci,
L.; Ciani, G.; Proserpio, D. M. Chem. Commun. 1999, 449-450. (l)
Groeneman, R. H.; MacGillivray, L. R.; Atwood, J . L. Inorg. Chem.
1999, 38, 208-209. (m) Gudbjartson, H.; Biradha, K.; Poirier, K. M.;
Zaworotko, M. J . J . Am. Chem. Soc. 1999, 121, 2599-2600. (n) Kleina,
C.; Graf, E.; Hosseini, M. W.; De Cian, A.; Fischer, J . Chem. Commun.
2000, 239-240. (o) Hong, M.; Zhao, Y.; Su, W.; Cao, R.; Fujita, M.;
Zhou, Z.; Chan, A. S. C. Angew. Chem., Int. Ed. 2000, 39, 2468-2470.
(p) Robson, R. J . Chem. Soc., Dalton Trans. 2000, 3735-3744. (q)
Biradha, K.; Fujita, M. J . Chem. Soc., Dalton Trans. 2000, 3805-3810.
(r) Sharma, A. C.; Borovik, A. S. J . Am. Chem. Soc. 2000, 122, 8946-
8955.
(12) (a) Ducharme, Y.; Wuest, J . D. J . Org. Chem. 1988, 53, 5787-
5789. (b) Lillya, C. P.; Baker, R. J .; Hutte, S.; Winter, H. H.; Lin, Y.
G.; Shi, J . F.; Dickinson, L. C.; Chen, J . C. W. Macromolecules 1992,
25, 2076-2080. (c) Abed, S.; Boileau, S.; Bouteiller, L. Macromolecules
2000, 33, 8479-8487.
(13) (a) Kotera, M.; Lehn, J .-M.; Vigneron, J .-P. J . Chem. Soc., Chem.
Commun. 1994, 197-199. (b) Russell, K. C.; Lehn, J .-M.; Kyritsakas,
N.; DeCian, A.; Fischer, J . New J . Chem. 1998, 123-128. (c) Choi, I.
S.; Li, X.; Simanek, E. E.; Akaba, R.; Whitesides, G. M. Chem. Mater.
1999, 11, 684-690. (d) Klok, H.-A.; J olliffe, K. A.; Schauer, C. L.; Prins,
L. J .; Spatz, J . P.; Mo¨ller, M.; Timmerman, P.; Reinhoudt, D. N. J .
Am. Chem. Soc. 1999, 121, 7154-7155.
(14) (a) Folmer, B. J . B.; Cavini, E.; Sijbesma, R. P.; Meijer, E. W.
Chem. Commun. 1998, 1847-1848. (b) Hirschberg, J . H. K. K.; Beijer,
F. H.; van Aert, H. A.; Magusim, P. C. M. M.; Sijbesma, R. P.; Meijer,
E. W. Macromolecules 1999, 32, 2696-2705. (c) Lange, R. F. M.; Van
Gurp, M.; Meijer, E. W. J . Polym. Sci., Part A: Polym. Chem. 1999,
37, 3657-3670. (d) Folmer, B. J . B.; Sijbesma, R. P.; Versteegen, R.
M.; van der Rijt, J . A. J .; Meijer, E. W. Adv. Mater. 2000, 12, 874-
878. (e) Boileau, S.; Bouteiller, L.; Laupreˆtre, F.; Lortie, F. New J .
Chem. 2000, 845-848. (f) Folmer, B. J . B.; Sijbesma, R. P.; Meijer, E.
W. J . Am. Chem. Soc. 2001, 123, 2093-2094.
(15) (a) Castellano, R. K.; Rudkevich, D. M.; Rebek, J ., J r. Proc. Natl.
Acad. Sci. U.S.A. 1997, 94, 7132-7137. (b) Castellano, R. K.; Rebek,
J ., J r. J . Am. Chem. Soc. 1998, 120, 3657-3663. (c) Castellano, R. K.;
Rebek, J ., J r. Polym. Mater. Sci. Eng. 1999, 80, 16-17. (d) Castellano,
R. K.; Nuckolls, C.; Eichhorn, S. H.; Wood, M. R.; Lovinger, A. J .;
Rebek, J ., J r. Angew. Chem., Int. Ed. 1999, 38, 2603-2606.
(16) (a) Beijer, F. H.; Kooijman, H.; Spek, A. L.; Sijbesma, R. P.;
Meijer, E. W. Angew. Chem., Int. Ed. 1998, 37, 75-78. (b) Beijer, F.
H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. J . Am.
Chem. Soc. 1998, 120, 6761-6769. (c) El-ghayoury, A.; Peeters, E.;
Schenning, A. P. H. J .; Meijer, E. W. Chem. Commun. 2000, 1969-
1970. For other recent examples of self-complementary quadruple
hydrogen-bonded dimers yet to be utilized in the construction of larger
aggregates, see: (d) Corbin, P. S.; Zimmerman, S. C. J . Am. Chem.
Soc. 1998, 120, 9710-9711. (e) Davis, A. P.; Draper, S. M.; Dunne, G.;
Ashton, P. R. Chem. Commun. 1999, 2265-2266.
(10) (a) Alcock, N. W.; Barker, P. R.; Haider, J . M.; Hannon, M. J .;
Painting, C. L.; Pikramenou, Z.; Plummer, E. A.; Rissanen, K.;
Saarenketo, P. J . Chem. Soc., Dalton Trans. 2000, 1447-1461. (b)
Hirschberg, J . H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J . A. J .
M.; Sijbesma, R. P.; Meijer, E. W. Nature 2000, 407, 167-170.
(11) (a) Bladon, P.; Griffin, A. C. Macromolecules 1993, 26, 6604-
6610. (b) Alexander, C.; J ariwala, C. P.; Lee, C. M.; Griffin, A. C.
Macromol. Symp. 1994, 77, 283-294. (c) Lee, C. M.; J ariwala, C. P.;
Griffin, A. C. Polymer 1994, 35, 4550-4554. (d) St Pourcain, C. B.;
Griffin, A. C. Macromolecules 1995, 28, 4116-4121. (e) Lee, C. M.;
Griffin, A. C. Macromol. Symp. 1997, 117, 281-290.