Scheme 1
Scheme 2
than the [2,3]-shift,15 is sufficiently slow to permit the
intervention of the undesired pathway. The strained azeti-
dinium ylide 2a presented an interesting question: Could
release of ring-strain lower the barrier to homolytic cleavage
and allow the [1,2]-shift pathway to compete with the
fragmentation process? With this in mind, we chose to
examine the behavior of methyl 1-benzylazetidine-2-car-
boxylate 516 in the presence of ethyl diazoacetate and various
transition metal catalysts.
pyrrolizidine alkaloids,7 as exemplified by turneforcidine8
and platynecine.9 Successful application of this approach
would convert an azetidinecarboxylate 1a with a pendant
diazoketone into pyrrolizidines 3a/4a,10 in which the ester
and ketone are properly positioned for reduction to the C-7
and C-9 secondary and primary alcohols found in many of
the naturally occurring pyrrolizidines. Here we describe the
successful execution of this strategy, including the synthesis
of (()-turneforcidine and (()-platynecine from methyl
1-benzylazetidine-2-carboxylate, in five steps.
We anticipated that ylide 6 would be generated under these
conditions (Scheme 3), and its behavior might offer insight
A potential limitation in the application of the spiro-ylide
methodology to pyrrolizidines was the availability of alterna-
tive ylide decomposition pathways. In the case of five-
membered ylides containing an endocyclic carbonyl, we11
and Padwa12 had observed products derived from an apparent
proton-transfer/fragmentative ring-opening process, isolated
to the exclusion of any of the desired [1,2]-shift products
(Scheme 2). In sharp contrast, Clark has obtained high yields
of five-membered ylide-derived products when the available
rearrangement pathway involves a concerted [2,3]-shift.13,14
On the basis of these results, we inferred that the stepwise
[1,2]-shift, which is generally observed to occur less readily
Scheme 3
(7) Review: Liddell, J. R. Nat. Prod. Rep. 2002, 19, 773-781.
(8) Previous syntheses of turneforcidine: (a) Wee, A. G. H. J. Org. Chem.
2001, 66, 8513-8517. (b) An, D. K.; Duncan, D.; Livinghouse, T.; Reid,
P. Org. Lett. 2001, 3, 2961-2963. (c) Niwa, H.; Kuroda, A.; Sakata, T.;
Yamada, K. Bull. Chem. Soc. Jpn. 1997, 70, 2541-2543. (d) Knight, D.
W.; Share, A. C.; Gallagher, P. T. J. Chem. Soc., Perkin Trans. 1 1997,
2089-2097. (e) Hudlicky, T.; Seoane, G.; Lovelace, T. C. J. Org. Chem.
1988, 53, 2094-2099. (f) Chamberlin, A. R.; Chung, J. Y. L. J. Org. Chem.
1985, 50, 4425-4431. (g) Ohsawa, T.; Ihara, M.; Fukumoto, K.; Kametani,
T. J. Org. Chem. 1983, 48, 3644-3648. (h) Aasen, A. J.; Culvenor, C. C.
J. Aust. J. Chem. 1969, 22, 2657-2662.
(9) Previous syntheses of platynecine: (a) Zhou, C.-Y.; Yu, W.-Y.; Chan,
P. W. H.; Che, C.-M. J. Org. Chem. 2004, 69, 7072-7082. (b) de Faria,
A. R.; Salvador, E. L.; Correira, C. R. D. J. Org. Chem. 2002, 67, 3651-
3661. (c) Denmark, S. E.; Parker, D. L.; Dixon, J. A. J. Org. Chem. 1997,
62, 435-436. (d) Kang, S. H.; Kim, G. T.; Yoo, Y. S. Tetrahedron Lett.
1997, 38, 603-606. (e) Fleet, G. W. J.; Seijas, J. A.; Vazqueztato, M. P.
Tetrahedron 1991, 47, 525-530. (f) Roder, E.; Bourauel, T.; Wiedenfeld,
H. Liebigs Ann. Chem. 1990, 607-609. (g) Rueger, H.; Benn, M.
Heterocycles 1983, 1331-1334. See also refs 8c, 8e, and 8f.
(10) For previous preparation of 3a and/or 4a, see refs 8c, 8e, and 8f.
(11) Naidu, B. N. Ph.D. Dissertation, University of Utah, Salt Lake City,
UT, 1994.
into the reactivity of azetidinium ylides toward ring expan-
sion. Ylide 6 possesses two groups on nitrogen that might
reasonably be expected to participate in [1,2]-shift processes.
Migration of the benzyl substituent would lead to azetidine
7, while migration of the ester-substituted carbon would
furnish pyrrolidine 8. In prior studies, we have found that
(14) For related observations involving oxonium ylide [1,2]- and
[2,3]-shifts, see: (a) Marmsa¨ter, F. P.; Vanecko, J. A.; West, F. G.
Tetrahedron 2002, 58, 2027-2040. (b) Marmsa¨ter, F. P.; Vanecko. J. A.;
West, F. G. Org. Lett. 2004, 6, 1657-1660.
(15) (a) Ammonium ylides: Jemison, R. W.; Laird, T.; Ollis, W. D.;
Sutherland, I. O. J. Chem. Soc., Perkin Trans. 1 1980, 1450-1461.
(b) Sulfonium ylides: Vedejs, E.; Arnost, M. J.; Hagen, J. P. J. Org. Chem.
1979, 44, 3230-3238. (c) Oxonium ylides: West, F. G.; Eberlein, T. H.;
Tester, R. W. J. Chem. Soc., Perkin Trans. 1 1993, 2857-2859.
(16) Rodebaugh, R. M.; Cromwell, N. H. J. Heterocycl. Chem. 1968,
309.
(12) Padwa, A.; Hasegawa, T.; Liu, B.; Zhang, Z. J. Org. Chem. 2000,
65, 7124-7133.
(13) Clark, J. S.; Hodgson, P. B.; Goldsmith, M. D.; Blake, A. J.; Cooke,
P. A.; Street, L. J. J. Chem. Soc., Perkin Trans. 1 2001, 3325-3337.
2950
Org. Lett., Vol. 7, No. 14, 2005