10.1002/cctc.201900733
ChemCatChem
FULL PAPER
[7]
[8]
[9]
I. Ando, N. Ogura, Y. Toyonaga, K. Hirahara, T. Shibata, T. Noguchi,
Intervirology 2013, 56, 302–309.
be avoided by identifying two regioselective enzymes that
discriminate between two very similar substrates such as the
employed diketone and hydroxyketone 2 and 3. The developed
synthesis avoids intermediate product isolation, metal catalysis,
minimizes by-product formation and affords high reaction yields.
S. J. Mishra, S. Ghosh, A. R. Stothert, C. A. Dickey, B. S. J. Blagg,
ACS Chem Biol. 2017, 12, 244-253.
O. Plettenburg, A. Hofmeister, D. Kadereit, J. Brendel, M. Loehn, J.-M.
Altenburger, US8796458, 2014.
[10] W. Yao, J. Zhuo, C. Zhang, US9371323, 2016.
[11] L. Ríos-Solís, P. Morris, C. Grant, A. O. O. Odeleye, H. C. Hailes, J. M.
Ward, P. A. Dalby, F. Baganz, G. J. Lye, Chemical Engineering
Science 2015, 122, 360–372.
Experimental Section
[12] H. Kohls, M. Anderson, J. Dickerhoff, K. Weisz, A. Córdova, P.
Berglund, H. Brundiek, U. T. Bornscheuer, M. Höhne, ChemCatChem
2015, 357, 1808-1814.
All experimental details on analytics, enzyme production and screening,
and all biocatalysis reactions are given in the Supporting Information.
Below follows a representative procedure for the concurrent cascade
synthesis of cis-4-aminocyclohexanol 1: The reaction was performed at a
1.5 mmol scale (concentration of 1,4-cyclohexanedione was 50 mM) in
an opened one-necked flask equipped with a magnetic stirring bar
(stirring at 250 rpm) and a thermometer (at 30°C). Freshly isolated cell
lysate of LK-KRED (0.2 mg/mL) and ATA-200 (2 mg/mL) were added to
30 mL of 100 mM potassium phosphate buffer, pH 7.5, containing 1 mM
NADP+, 0.76% (v/v) isopropanol (100 mM), 1 mM MgCl2, 500 mM
isopropylamine, 1 mM PLP, and 2% v/v DMSO. After 48 hours, the
reaction was stopped after 44% conversion (Table 2) and the product
was isolated as described in the Supporting Information and afforded
light yellow crystals of cis-4-aminocyclohexanol hydrochloride (99:1%
cis:trans ratio).
[13] M. Cerro-Alcarón, A. Guerrero-Ruίz, I. Rodrίguez-Ramos, Catalysis
Today 2004, 93-95, 395-403.
[14] A. L. E. Larsson, R. G. P. Gatti, J.-E. Bäckvall, J. Chem. Soc., Perkin
Trans. 1997, 1, 2873-2877.
[15] T. Sehl, H. C. Hailes, J. M. Ward, R. Wardenga, E. von Lieres, H.
Offermann, R. Westphal, M. Pohl, D. Rother, Angew. Chem. Int. Ed.
2013, 52, 6772–6775; Angew. Chem. 2013, 125, 6904–6908.
[16] A. T. Nielsen, W. R. Carpenter, Org. Synth. 1965, 45, 25.
[17] C. Thakker, I. Martinez, K.-Y. San, G. N. Bennet, Biotechnol. J. 2012, 7,
213-224.
[18] a) S. García-Cerrada, L. Redondo-Gallego, F. J. Martínez-Olid, J. A.
Rincón, P. García-Losada, Org. Process Res. Dev., 2017, 21 (5), 779–
784; b) X. Ju, Y. Tang, X. Liang, M. Hou, Z. Wan, J. Tao, Org. Process
Res. Dev., 2014, 18, 827−830.
[19]
Only one approach was recently reported that facilitates a selective
reduction, but needs a large amount of whole cells (10 g wet cells for
40 mg of substrate). S. Krishnan, S. Narayan, A. Chadha, AMB
Express 2016, 6, 1-15.
Acknowledgements
The work is done within BIOCASCADES project. The
BIOCASCADES project is supported by the European
Commission under the Horizon 2020 program through the Marie
Skłodowska-Curie actions: ITN-EID under the Environment
Cluster. Grant Agreement #634200. We thank to Prof. U. T.
Bornscheuer for his continuous support and fruitful discussions.
[20] B. A. Sherer, N. Brugger, WO2017106607, 2017.
[21] S.-Y. Sit et al, WO2015157483, 2015.
[22]
E. Busto, L. Martínez-Montero, V. Gotor, V. Gotor-Fernández, Eur. J.
Org. Chem. 2013, 4057–4064.
[23] E. Liardo, N. Ríos-Lombardía, F. Morís, F. Rebolledo, J. González-
Sabín, ACS Catal. 2017, 7, 4768-4774.
[24] a) G. Bahrami, B. Mohammadia, J. Chromatogr. B 2007, 850, 400–404;
b) S. T. Ulu, Spectrochim. Acta, Part A 2009, 72, 138–143.
Keywords: amino alcohols • asymmetric catalysis • enzyme
[25] I. V. Pavlidis, M. S. Weiss, M. Genz, P. Spurr, S. P. Hanlon, B. Wirz, H.
Iding, U. T. Bornscheuer, Nat. Chem. 2016, 8, 1076–1082.
catalysis • amine transaminase • ketoreductase
[26] D. Hülsewede, M. Tänzler, P. Süss, A. Mildner, U. Menyes, J. von
Langermann, Eur. J. Org. Chem. 2018, 2130–2133.
[1]
[2]
G. Gübitz, B. Pierer, W. Wendelin, Chirality 1992, 4, 333-337.
R. J. Albers, L. Ayala, S. S. Clareen, M. Mercedes Delgado Mederos, R.
Hilgraf, S. G. Hegde, K. Hughes, A. Kois, V. Plantevin-Krenitsky, M.
McCarrick, L. Nadolny, M. S. S. Palanki, K. Sahasrabudhe, J. Sapienza,
C. Vista, Y. Satoh, M. K. Sloss, E. Sudbeck, J. Wright, US20090275564,
2009.
[27] Additionally,
a method for upgrading stereoisomeric excess of 4-
aminocyclohexanol by crystallization has been reported: B. Lehmann,
EP0909753, 2004.
[28] V. Simov, S. V. Deshmukhc, C. J. Dinsmoreb, F. Elwooda, R. B.
Fernandeza, Y. Garciaa, C. Gibeaua, H. Gunaydina, J. Jungd, J. D.
Katza, B. Kraybille, B. Lapointea, S. B. Patela, T. Siua, H. Sua, J. R.
Young, Bioorg. Med. Chem. Lett. 2016, 26, 1803–1808.
[29] a) J. D. Hoeschele, H. D. H. Showalter, A. J. Kraker, W.L. Elliott, B. J.
Roberts, J. W. Kampf, J. Med. Chem. 1994, 37, 2630–2636, b) N.
Margiotta, C. Marzano, V. Gandin, D. Osella, M. Ravera, E. Gabano, J.
A. Platts, E. Petruzzella, J. D. Hoeschele, G. Natile, J. Med. Chem.
2012, 55, 7182–7192; c) B. J. Pages, J. Sakoff, J. Gilbert, Y. Zhang, S.
M. Kelly, J. D. Hoeschelee, J. R. Aldrich-Wright, Dalton Trans. 2018, 47,
2156-2163.
[3]
[4]
a) D. J. Ager, I. Prakash, D. R. Schaad, Chem. Rev. 1996, 96, 835–
875; b) R. Noyori, M. Kitamura, Angew. Chem. Int. Ed. 1991, 30, 49-69;
Angew. Chem. 1991, 103, 34–55.
Approx. 2/3 of the 2576 chiral drugs listed in a collection of all FDA-
approved drugs contain more than one stereocenter (see
J. J. Yang, S. L. Mathias, S. J. Nelson, T. I. Oprea,, Nucleic Acids Res.
2017, 45: D932–D939.)
[5]
For chemo-enzymatic cascades, see: a) H. Gröger, W. Hummel, Curr.
Opin. Chem. Biol. 2014, 19, 171-179; b) F. Rudroff, M. D. Mihovilovic,
H. Gröger, R. Snajdrova, H. Iding, U. T. Bornscheuer, Nat. Catal. 2018,
1, 12-22.
[30] a) G. Zhang, G.-M. Yan, H.-H. Ren, Y. Li, X.-J. Wang, J. Yang, Polym.
Chem. 2016, 7, 44-53; b) Y. Inoue, H. Nishino, Y. Watanabe,
JP2008298722, 2008.
For multi-enzymatic cascades, see: c) E. Ricca, B. Brucher, J. H.
Schrittwieser, Adv. Synth. Catal. 2011, 353, 2239-2262; d) R. C. Simon,
N. Richter, E. Busto, W. Kroutil, ACS Catal. 2014, 4, 129-143; e) J.
Muschiol, C. Peters, N. Oberleitner, M. D. Mihovilovic, U. T.
Bornscheuer, F. Rudroff, Chem. Commun. 2015, 51, 5798-5811; f) S. P.
France, L. J. Hepworth, N. J. Tuner, S. L. Flitsch, ACS Catal. 2017, 7,
710-724; g) J. H. Schrittwieser, S. Velikogne, M. Hall, W. Kroutil, Chem.
Rev. 2018, 118, 270-348.
[31] A. Lerchner, S. Achatz, C. Rausch, T. Haas, A. Skerra, ChemCatChem
2013, 5, 3374–3383.
Supporting information is available at
[6]
M. Malerba, B. Ragnoli, Expert Opin. Drug Metab. Toxicol. 2008, 4,
119-129.
This article is protected by copyright. All rights reserved.