Macromolecules
Article
(13) Broz, P.; Driamov, S.; Ziegler, J.; Ben-Haim, N.; Marsch, S.;
Meier, W.; Hunziker, P. Nano Lett. 2006, 6, 2349.
(14) Caruso, R. A.; Giersig, M.; Willig, F.; Antonietti, M. Langmuir
1998, 14, 6333.
(15) Hayward, R. C.; Pochan, D. J. Macromolecules 2010, 43, 3577.
(16) Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik,
M. A. Science 2007, 317, 644.
from 5 to 29% w/w. Thus, this phase diagram differs
qualitatively from that previously reported for a RAFT aqueous
dispersion polymerization formulation, which probably reflects
the much lower degree of solvation of the core-forming PBzMA
chains in the present case. The phase diagram can be used to
reliably predict the particle morphology for a given set of
reaction conditions and also enables mixed phase regions to be
identified (and hence avoided). Compared to previous RAFT
alcoholic dispersion polymerization syntheses reported in the
literature, our formulation leads to very high monomer
conversions within 12−24 h at 70 °C and also relatively high
blocking efficiencies for the RAFT macro-CTA. When
transferred from ethanol to aqueous solution, these PDMA−
PBzMA “nano-objects” acquired a high cationic surface charge
due to protonation of the PDMA chains, as judged by aqueous
electrophoresis. However, electron microscopy studies con-
firmed that the original particle morphology was retained after
this solvent exchange. This is presumably related to the
relatively high glass transition temperature of the PBzMA
chains, which leads to kinetically frozen morphologies at
ambient temperature.
(17) Cui, H.; Chen, Z.; Zhong, S.; Wooley, K. L.; Pochan, D. J.
Science 2007, 317, 647.
(18) Boisse,
H.; Charleux, B. Chem. Commun. 2010, 46, 1950.
(19) Zhang, X.; Boisse, S.; Zhang, W.; Beaunier, P.; D’Agosto, F.;
́
S.; Rieger, J.; Belal, K.; Di-Cicco, A.; Beaunier, P.; Li, M.-
́
Rieger, J.; Charleux, B. Macromolecules 2011, 44, 4149.
(20) Rieger, J.; Zhang, W.; Stoffelbach, F.; Charleux, B. Macro-
molecules 2010, 43, 6302.
(21) Charleux, B.; D’Agosto, F.; Delaittre, G. Adv. Polym. Sci. 2010,
233, 125.
́
(22) Boisse, S.; Rieger, J.; Pembouong, G.; Beaunier, P.; Charleux, B.
J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3346.
(23) Sugihara, S.; Blanazs, A.; Armes, S. P.; Ryan, A. J.; Lewis, A. L. J.
Am. Chem. Soc. 2011, 133, 15707.
(24) Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A. J.; Armes, S. P. J.
Am. Chem. Soc. 2011, 133, 16581.
(25) He, T.; Zou, Y.-F.; Pan, C.-Y. Polym. J. (Tokyo, Jpn.) 2002, 34,
138.
ASSOCIATED CONTENT
■
(26) Wan, W.-M.; Pan, C.-Y. Polym. Chem. 2010, 1, 1475.
(27) Huang, C.-Q.; Pan, C.-Y. Polymer 2010, 51, 5115.
(28) Cai, W.; Wan, W.; Hong, C.; Huang, C.; Pan, C. Soft Matter
2010, 6, 5554.
(29) Wan, W. M.; Sun, X. L.; Pan, C. Y. Macromol. Rapid Commun.
2010, 31, 399.
S
* Supporting Information
Zeta potential and hydrodynamic diameter data as a function of
solution pH. This material is available free of charge via the
(30) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc.,
Faraday Trans. 2 1976, 72, 1525.
(31) Israelachvili, J. Intermolecular & Surface Forces, 2nd ed.;
AUTHOR INFORMATION
■
Corresponding Author
Academic Press: London, 1991.
(32) Antonietti, M.; Forster, S. Adv. Mater. 2003, 15, 1323.
̈
Notes
(33) Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Commun.
The authors declare no competing financial interest.
2009, 30, 267.
(34) Semsarilar, M.; Ladmiral, V.; Blanazs, A.; Armes, S. P. Langmuir
2012, 28, 914.
(35) Semsarilar, M.; Jones, E. R.; Blanazs, A.; Armes, S. P. Adv. Mater.
2012, DOI: 10.1002/adma.201200925.
(36) Zhang, X.; Rieger, J.; Charleux, B. Polym. Chem. 2012, 3, 1502.
(37) Madsen, J.; Armes, S. P.; Bertal, K.; MacNeil, S.; Lewis, A. L.
Biomacromolecules 2009, 10, 1875.
ACKNOWLEDGMENTS
■
S.P.A. thanks EPSRC for postdoctoral support of M.S. (EP/
G007950/1) and A.B. (EP/E012949/1). The University of
Sheffield is thanked for a summer vacation undergraduate grant
to support E.R.J.
(38) Zhang, W. J.; D’Agosto, F.; Boyron, O.; Rieger, J.; Charleux, B.
Macromolecules 2011, 44, 7584.
REFERENCES
■
(1) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.
P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.;
Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559.
(2) Jain, S.; Bates, F. S. Science 2003, 300, 460.
(3) Howse, J. R.; Jones, R. A. L.; Battaglia, G.; Ducker, R. E.; Leggett,
G. J.; Ryan, A. J. Nat. Mater. 2009, 8, 507.
(4) Li, Y.; Armes, S. P. Angew. Chem., Int. Ed. 2010, 49, 4042.
(5) Zhang, L.; Eisenberg, A. J. Am. Chem. Soc. 1996, 118, 3168.
(6) Zhang, L.; Eisenberg, A. Science 1995, 268, 1728.
(7) Ahmed, F.; Discher, D. E. J. Controlled Release 2004, 96, 37.
(8) Savic, R.; Luo, L. B.; Eisenberg, A.; Maysinger, D. Science 2003,
300, 615.
(9) Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko,
T.; Discher, D. E. Nat. Nanotechnol. 2007, 2, 249.
(10) Ghoroghchian, P. P.; Frail, P. R.; Susumu, K.; Park, T. H.; Wu,
S. P.; Uyeda, H. T.; Hammer, D. A.; Therien, M. J. J. Am. Chem. Soc.
2005, 127, 15388.
(11) Phillip, W. A.; O’Neill, B.; Rodwogin, M.; Hillmyer, M. A.;
Cussler, E. L. ACS Appl. Mater. Interfaces 2010, 2, 847.
(12) Vriezema, D. M.; Garcia, P. M. L.; Oltra, N. S.; Hatzakis, N. S.;
Kuiper, S. M.; Nolte, R. J. M.; Rowan, A. E.; van Hest, J. C. M. Angew.
Chem., Int. Ed. 2007, 46, 7378.
5098
dx.doi.org/10.1021/ma300898e | Macromolecules 2012, 45, 5091−5098