Please do not adjust margins
Green Chemistry
Page 4 of 6
DOI: 10.1039/C5GC01584G
COMMUNICATION
Journal Name
3786; (e) J. Y. Cai, H. Ma, J. J. Zhang, Q. Song, Z. T. Du, Y. Z.
Huang and J. Xu, Chem.-Eur. J., 2013, 19, 14215-14223; (f) A.
Villa, M. Schiavoni, S. Campisi, G. M. Veith and L. Prati,
was removed by evaporation and the crude HMF together with
FDCA was obtained. The HMF was recovered by water
extraction using the method we reported earlier (5 ml x 2, 0.64
mmol, >99% HMF recovery).14b The HMF in aqueous solution
was then directly transferred to a Parr reactor for the
oxidation reaction. Under base-free conditions with Ru/C
catalyst, the reaction was conducted and completed in 15
hours with an overall FDCA yield of 53% obtained (83% yield in
the second step). It should be noted that the Ru/C catalyzed
oxidization reaction of freshly synthesized HMF (from sugar) is
slower than the reaction of pure commercial HMF (15 h vis 10
h), which may be due to some minor water soluble impurities
in the freshly synthesized HMF solution.
Chemsuschem, 2013,
Abu-Omar, A. Modak and A. Bhaumik, J. Catal., 2013, 299
316-320; (h) G. S. Yi, S. P. Teong and Y. G. Zhang,
Chemsuschem, 2015, , 1151-1155.
(a) T. Pan, J. Deng, Q. Xu, Y. Zuo, Q.-X. Guo and Y. Fu,
Chemsuschem, 2013, , 47-50; (b) S. Dutta, S. De and B. Saha,
ChemPlusChem, 2012, 77, 259-272; (c) A. Gandini, Polym.
Chem., 2010, , 245-251; (d) J. Deng, H. J. Song, M. S. Cui, Y.
P. Du and Y. Fu, Chemsuschem, 2014, , 3334-3340.
6, 609-612; (g) B. Saha, D. Gupta, M. M.
,
8
4
6
1
7
5
6
S. Siankevich, G. Savoglidis, Z. F. Fei, G. Laurenczy, D. T. L.
Alexander, N. Yan and P. J. Dyson, J. Catal., 2014, 315, 67-74.
(a) A. Eerhart, A. P. C. Faaij and M. K. Patel, Energy Environ.
Sci., 2012, 5, 6407-6422; (b) A. Gandini, A. J. D. Silvestre, C. P.
In conclusion, the base-free conversion of HMF to FDCA over
commercially available Ru/C catalyst in water was investigated.
FDCA yield of 88% was obtained with full HMF conversion.
Under base-free condition with Ru/C catalyst, the oxidation
process prefers the DFF/FFCA pathway rather than HFCA
pathway. The oxidization of –OH to –CHO of HMF was much
faster (<2h), while further conversion of the remaining–CHO to
–COOH was the rate-limiting step (8h). To further accelerate
this reaction, a one-pot 2-step method was proposed where
HMF was first converted to FFCA and DFF intermediates, and it
was further oxidized to FDCA by the titration with peracetic
aicd at room temperature. In this way, 95% FDCA was
obtained. Finally FDCA promoted conversion of fructose and
glucose to HMF was also studied, and the freshly obtained
HMF was further oxidized to FDCA. An overall FDCA yield of
53% was obtained from fructose under base-free condition.
The lower price of Ru catalyst and base-free reaction condition
make this method a very competitive process for the FDCA
production.
Neto, A. F. Sousa and M. Gomes, J. Polym. Sci. A Polym.
Chem., 2009, 47, 295-298; (c) S. Thiyagarajan, W. Vogelzang,
R. J. I. Knoop, A. E. Frissen, J. van Haveren and D. S. van Es,
Green Chem., 2014, 16, 1957-1966.
7
8
T. Werpy and G. Petersen, DOE report, 2004, 1-76.
(a) R. J. van Putten, J. C. van der Waal, E. de Jong, C. B.
Rasrendra, H. J. Heeres and J. G. de Vries, Chem. Rev., 2013
113, 1499-1597; (b) S. P. Teong, G. S. Yi and Y. G. Zhang,
Green Chem., 2014, 16, 2015-2026; (c) L. K. Lai and Y. G.
Zhang, Chemsuschem, 4, 2011, 1745-1748; (d) W. H. Peng, Y.
Y. Lee, C. N. Wu and K. C. W. Wu, J. Mater. Chem. 2012, 22
,
23181-23185; (e) X. Cao, S. P. Teong, D. Wu, Di, H. Su, Y.
Zhang, Green Chem., 2015, 17, 2348-2352; (f) S. P. Teong, G.
Yi, H. Zeng, Y. Zhang, Green Chem., 2015, 17, 3751-3755; (g)
S. P. Teong, G. Yi, X. Cao, Y. Zhang, Chemsuschem, 2014, 7,
2120-2124.
(a) N. K. Gupta, S. Nishimura, A. Takagaki and K. Ebitani,
Green Chem., 13, 824-827; (b) S. E. Davis, L. R. Houk, E. C.
Tamargo, A. K. Datye and R. J. Davis, Catal. Today, 160, 55-
60; (c) B. Siyo, M. Schneider, J. Radnik, M.-M. Pohl, P. Langer
and N. Steinfeldt, Appl. Catal. A-Gen., 2014, 478, 107-116;
(d) S. E. Davis, B. N. Zope and R. J. Davis, Green Chem., 2012,
14, 143-147.
9
10 (a) F. Koopman, N. Wierckx, J. H. de Winde and H. J.
Ruijssenaars, Bioresource Technol., 2010, 101, 6291-6296; (b)
W. P. Dijkman, D. E. Groothuis and M. W. Fraaije, Angew.
Chem.-Int. Edit., 2014, 53, 6515-6518; (c) S. M. McKenna, S.
Leimkuhler, S. Herter, N. J. Turner and A. J. Carnell, Green
Chem., 2015, 17, 3271-3275.
Acknowledgements
This work was supported by the Institute of Bioengineering
and Nanotechnology (Biomedical Research Council), Biomass-
to-Chemicals program (Science and Engineering Research
Council), Agency for Science, Technology and Research,
Singapore.
11 (a) Y. Y. Gorbanev, S. K. Klitgaard, J. M. Woodley, C. H.
Christensen and A. Riisager, Chemsuschem, 2009, 2, 672-675;
(b) O. Casanova, S. Iborra, A. Corma, Chemsuschem, 2009, 2,
1138-1144.
12 H. A. Rass, N. Essayem and M. Besson, Green Chem., 2013,
15, 2240-2251.
13 M. Jiang, Q. Liu, Q. Zhang, C. Ye and G. Zhou, J. Polym. Sci. A
Polym. Chem., 2012, 50, 1026-1036.
14 (a) J. M. R. Gallo, D. M. Alonso, M. A. Mellmer and J. A.
Dumesic, Green Chem., 2013, 15, 85-90; (b) G. S. Yi, S. P.
Notes and references
‡ Footnotes relating to the main text should appear here. These
might include comments relevant to but not central to the
matter under discussion, limited experimental and spectral data,
and crystallographic data.
Teong; X. K. Li and Y. G. Zhang, ChemSusChem, 2014,
2131-2137
7,
1
2
D. R. Dodds, R. A. Gross, Science, 2007, 318, 1250-1251.
(a) R. A. Sheldon, Green Chem., 2014, 16, 950-963; (b) A. M.
Ruppert, K. Weinberg, R. Palkovits, Angew. Chem.-Int. Edit.,
2012, 51, 2564-2601; (c) D. S. van Es, J. Renew. Mater., 2013,
15 W. Partenheimer and V. V. Grushin, Adv. Synth. Catal., 2001,
343, 102-111.
16 M. A. Lilga, R. T. Hallen and M. Gray, Top. Catal., 2010, 53
1264-1269.
,
1
, 61-72; (d) Y. Zhang, J. Y. G. Chan, Energy Environ. Sci.,
2010, , 408-417; (d) J. J. Bozell, Science, 2010, 329, 522-523.
(a) H. A. Rass, N. Essayem, M. Besson, Chemsuschem, 2015,
, 1206-1217; (b) A. Jain, S. C. Jonnalagadda, K. V.
Ramanujachary, A. Mugweru, Catal. Commun., 2015, 58
17 X. Y. Wan, C. M. Zhou, J. S. Chen, W. P. Deng, Q. H. Zhang, Y.
H. Yang and Y. Wang, ACS Catal., 2014, , 2175-2185.
3
4
3
18 (a) P. Vinke, W. van der Poel and H. Van Bekkum., Stud. Surf.
Sci. Catal., 1991, 59, 385-394; (b) A. Takagaki, M. Takahashi,
S. Nishimura and K. Ebitani, ACS Catal., 2011, 1, 1562-1565;
8
,
179-182; (c) B. Liu, Y. S. Ren, Z. H. Zhang, Green Chem., 2015,
17, 1610-1617; (d) D. J. Chadderdon, L. Xin, J. Qi, Y. Qiu, P.
Krishna, K. L. More, W. Z. Li, Green Chem., 2014, 16, 3778-
(c) J. F. Nie and H. C. Liu, J. Catal., 2014, 316, 57-66; (d) J. F.
Nie, J. H. Xie and H. C. Liu, J. Catal., 2013, 301, 83-91.
4 | Green Chem., 2015, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins