di-dendrimer structure of 10 provides multivalent ligand receptor
interactions for selective cell targeting and enhances the delivery
of boron into cells. In addition, the use of galactose as a targeting
moiety increases the water solubility of the carborane cage.
This work was financially supported by Academia Sinica,
the National Tsing Hua University, and the National Science
Council, Taiwan.
Notes and references
Fig. 1 Average boron concentration obtained by ICP-MS per
HepG2 cell after incubation with compound 10 or BSH for 6 hours.
1 (a) A. H. Soloway, W. Tjarks, B. A. Barnum, F. G. Rong,
R. F. Barth, I. M. Codogni and J. G. Wilson, Chem. Rev., 1998,
98, 1515–1562; (b) M. F. Hawthorne and A. Maderna, Chem. Rev.,
1999, 99, 3421–3434; (c) R. F. Barth, J. A. Coderre, M. G.
H. Vicente and T. E. Blue, Clin. Cancer Res., 2005, 11, 3987–4002.
2 (a) G. Calabrese, A. C. N. M. Gomes, E. Barbu, T. G. Nevell and
J. Tsibouklis, J. Mater. Chem., 2008, 18, 4864–4871; (b) C. Thimon,
L. Panza and C. Morin, Synlett, 2003, 1399–1402; (c) L. F. Tietze,
U. Griesbach, U. Bothe, H. Nakamura and Y. Yamamoto,
ChemBioChem, 2002, 3, 219–225; (d) A. Maderna, R. Huertas,
M. F. Hawthorne, R. Luguya and M. G. H. Vicente, Chem. Commun.,
2002, 1784–1785; (e) A. Crivello, C. Nervi, R. Gobetto, S. G. Crich,
I. Szabo, A. Barge, A. Toppino, A. Deagostino, P. Venturello and
S. Aime, JBIC, J. Biol. Inorg. Chem., 2009, 14, 883–890;
(f) L. F. Tietze, U. Bothe, U. Griesbach, M. Nakaichi, T. Hasegawa,
H. Nakamura and Y. Yamamoto, ChemBioChem, 2001, 2, 326–334.
3 (a) T. B. Yisgedu, X. Chen, S. Schricker, J. Parquette, E. A. Meyers
and S. G. Shore, Chem.–Eur. J., 2009, 15, 2190–2199;
(b) S. B. Kahl and J. Li, Inorg. Chem., 1996, 35, 3878–3880;
(c) H. Li, F. R. Fronczek and M. G. H. Vicente, J. Organomet.
Chem., 2009, 694, 1607–1611; (d) H. Li, F. R. Fronczek and M. G. H.
Vicente, Tetrahedron Lett., 2008, 49, 4828–4830.
Fig. 2 The fraction of HepG2 cells that survived after irradiation
with thermal neutrons. HepG2 cells that were not treated with a
boron-containing compound (K), treated with compound 10 at
a boron concentration of 50 ppm for 6 h (’), and treated with BSH
at a boron concentration of 50 ppm for 6 h (m).
4 (a) M. C. Parrott, E. B. Marchington, J. F. Valliant and
A. Adronov, J. Am. Chem. Soc., 2005, 127, 12081–12089;
(b) B. P. Dash, R. Satapathy, J. A. Maguire and N. S. Hosmane,
Org. Lett., 2008, 10, 2247–2250.
efficiency of the boron agents in BNCT, HepG2 cells treated
with DGB 10 or BSH at a boron concentration of 50 ppm for
6 h, as well as untreated control cells were irradiated with
thermal neutrons. Fig. 2 shows the surviving fraction of
neutron-irradiated HepG2 cells. In addition, the surviving
fraction is also plotted as a function of the neutron fluency.
As demonstrated in Fig. 2 and Fig. S8 (ESIw), after irradiation
with neutrons, compound 10 killed more cells than BSH, a
commonly used BNCT agent in clinics (morphological differ-
ences in the colony formation of HepG2 cells treated with
compound 10 or BSH as a function of the neutron dosage are
shown in Fig. S9 (ESIw)). As the intensity of neutron irradia-
tion increased, an enhancement in the killing effect on HepG2
cells treated with DBG 10 and BSH was observed. Although
cells not treated with boron also died after irradiation, the cell
killing efficiency of DBG 10 was ten-fold greater than that of
BSH-exposed cells at neutron fluxes of 3.96 Â 1011 and 4.90 Â
5 (a) X. Q. Pan, H. Wang, S. Shukla, M. Sekido, D. M. Adams,
W. Tjarks, R. F. Barth and R. J. Lee, Bioconjugate Chem., 2002,
13, 435–442; (b) J.-D. Lee, M. Ueno, Y. Miyajima and
H. Nakamura, Org. Lett., 2007, 9, 323–326; (c) S. Altieri,
M. Balzi, S. Bortolussi, P. Bruschi, L. Ciani, A. M. Clerici,
P. Faraoni, C. Ferrari, M. A. Gadan, L. Panza, D. Pietrangeli,
G. Ricciardi and S. Ristori, J. Med. Chem., 2009, 52, 7829–7835.
6 A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley,
C. R. Bertozzi, G. W. Hart and M. E. Etxler, Essentials of glycobiology,
Cold Spring Harbor Laboratory Press, New York, 2nd edn, 2009.
7 (a) P. H. Weigel and J. A. Oka, J. Biol. Chem., 1983, 258,
5095–5102; (b) P. H. Weigel and J. H. N. Yik, Biochim. Biophys.
Acta, Gen. Subj., 2002, 1572, 341–363.
8 D. T. Connolly, R. R. Townsend, K. Kawaguchi, W. R. Bell and
Y. C. Lee, J. Biol. Chem., 1982, 257, 939–945.
9 (a) Y. C. Lee, R. R. Townsend, M. R. Hardy, J. Lonngren, J. Arnarp,
¨
¨
M. Haraldsson and H. Lonn, J. Biol. Chem., 1983, 258, 199–202;
(b) Y. C. Lee and R. T. Lee, Acc. Chem. Res., 1995, 28, 321–327.
10 C.-H. Lai, C.-Y. Lin, H.-T. Wu, H.-S. Chan, Y.-J. Chuang,
C.-T. Chen and C.-C. Lin, Adv. Funct. Mater., 2010, 20, 3948–3958.
11 F. I. Chou, H. P. Chung, H. M. Liu, C. W. Chi and W. Y. Lui,
Appl. Radiat. Isot., 2009, 67, S105–S108.
12 (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596–2599; (b) W. H. Binder and
R. Sachsenhofer, Macromol. Rapid Commun., 2007, 28, 15–54;
(c) R. K. V. Lim and Q. Lin, Chem. Commun., 2010, 46, 1589–1600.
13 L. Schmitt, C. Dietrich and R. Tampe, J. Am. Chem. Soc., 1994,
116, 8485–8491.
14 C. D. Hein, X.-M. Liu, F. Chen, D. M. Cullen and D. Wang,
Macromol. Biosci., 2010, 10, 1544–1556.
15 X. Wu, C. C. Ling and D. R. Bundle, Org. Lett., 2004, 6, 4407–4410.
16 S.-Y. Han and Y.-A. Kim, Tetrahedron, 2004, 60, 2447–2467.
17 J. G. Wilson, A. K. M. Anisuzzaman, F. Alam and A. H. Soloway,
Inorg. Chem., 1992, 31, 1955–1958.
1011 n cmÀ2 À1, respectively. Notably, when the dose of
s
irradiated thermal neutrons is increased, the cell lethal effect
is correspondingly increased, which is no dose contribution
from the BNCT.11 Compared to previous reports,11 DBG 10
provided superior cytotoxic effect at low irradiation flux
(1.66 Â 1011 n cmÀ2
s
À1). Furthermore, upon irradiation at
an intensity of 4.90 Â 1011 n cmÀ2, the surviving fraction of
cells treated with DBG 10 was only 0.45%. Thus, the results
clearly demonstrated that DBG 10 provides superior in vitro
cytotoxic effects and indicated that targeting is of great
importance in the development of BNCT agents.
The success of BNCT treatment ultimately depends on its
in vivo tumor-localizing property and its ability to enrich boron
atoms in tumors. In the present study, we demonstrated the
usefulness of DGB 10 as a potential boron delivery agent. The
18 J. O. Osby, M. G. Martin and B. Ganem, Tetrahedron Lett., 1984,
25, 2093–2096.
19 A. F. Armstrong and J. F. Valliant, Dalton Trans., 2007, 4240–4251.
c
614 Chem. Commun., 2012, 48, 612–614
This journal is The Royal Society of Chemistry 2012