Communication
ChemComm
13 S. Ando, R. Murakami, J.-i. Nishida, H. Tada, Y. Inoue, S. Tokito and
Y. Yamashita, J. Am. Chem. Soc., 2005, 127, 14996–14997.
14 Z. He, D. Liu, R. Mao, Q. Tang and Q. Miao, Org. Lett., 2012, 14,
1050–1053.
15 K. E. Maly, Cryst. Growth Des., 2011, 11, 5628–5633.
16 M.-X. Zhang and G.-J. Zhao, ChemSusChem, 2012, 5, 879–887.
17 H. T. Black and D. F. Perepichka, Angew. Chem., Int. Ed., 2014, 53,
2138–2142.
the nitrile and s-holes of these compounds as point charges with
magnitude equal to their calculated maximum charge does not
sufficiently predict the relative behavior of 3, 4, and 5—i.e., that
single crystals of 3 or 4 do not show halogen bonding while 5
does. This observation highlights that more positive s-holes do
not necessarily favor the observation of halogen bonding.
We draw two primary conclusions from this work: (i) all
benzonitrile-based diphenylacetylene molecules that showed
Nꢀ ꢀ ꢀX halogen bonding (1, 2, and 5) between their long-axis
termini showed 2-D brickwork packing motifs, while those
molecules that did not show this interaction adopted other
packing motifs; (ii) while increasing the positive potential of
the s-hole of the aryl iodide through fluorination led to a
shorter Nꢀ ꢀ ꢀI halogen bond, fluorination actually disrupted
NꢀꢀꢀBr halogen bonding by creating other sites of positive potential
that interact with the Lewis basic nitrile. More broadly, halogen
bonding therefore presents an opportunity to discover other
organic semiconductors that adopt 2-D brickwork structures in
the solid state. Such packing motifs, although reported in some
instances to be highly beneficial to semiconducting properties,
are rare in the field of organic semiconductors, as their rational
design is currently possible only in narrowly defined cases. This
work also highlights how the delicate balance of non-covalent
interactions can change resulting arrangement of molecules in
a crystal dramatically.
ˇˇ ´
18 A. N. Sokolov, T. Friscic and L. R. MacGillivray, J. Am. Chem. Soc.,
2006, 128, 2806–2807.
19 P. Metrangolo and G. Resnati, Science, 2008, 321, 918–919.
20 T. M. Beale, M. G. Chudzinski, M. G. Sarwar and M. S. Taylor, Chem.
Soc. Rev., 2013, 42, 1667–1680.
21 P. Metrangolo, H. Neukirch, T. Pilati and G. Resnati, Acc. Chem. Res.,
2005, 38, 386–395.
22 A. Mukherjee, S. Tothadi and G. R. Desiraju, Acc. Chem. Res., 2014,
47, 2514–2524.
23 P. Metrangolo, F. Meyer, T. Pilati, G. Resnati and G. Terraneo,
Angew. Chem., Int. Ed., 2008, 47, 6114–6127.
24 P. Politzer, J. S. Murray and T. Clark, Phys. Chem. Chem. Phys., 2010,
12, 7748.
25 P. Metrangolo, G. Resnati, T. Pilati, R. Liantonio and F. Meyer,
J. Polym. Sci., Part A: Polym. Chem., 2006, 45, 1–15.
26 L. Meazza, J. A. Foster, K. Fucke, P. Metrangolo, G. Resnati and
J. W. Steed, Nat. Chem., 2013, 5, 42–47.
27 A. C. B. Lucassen, M. Vartanian, G. Leitus and M. E. Van Der Boom,
Cryst. Growth Des., 2005, 5, 1671–1673.
28 E. Cariati, G. Cavallo, A. Forni, G. Leem, P. Metrangolo, F. Meyer,
T. Pilati, G. Resnati, S. Righetto, G. Terraneo and E. Tordin, Cryst.
Growth Des., 2011, 11, 5642–5648.
29 E. Cariati, A. Forni, S. Biella, P. Metrangolo, F. Meyer, G. Resnati,
S. Righetto, E. Tordin and R. Ugo, Chem. Commun., 2007, 2590–2592.
30 T. Shirman, J.-F. Lamere, L. J. W. Shimon, T. Gupta, J. M. L. Martin
and M. E. Van Der Boom, Cryst. Growth Des., 2008, 8, 3066–3072.
31 J. D. Virdo, Y. H. Kawar, A. J. Lough and T. P. Bender, CrystEng-
Comm, 2013, 15, 3187–3199.
32 O. S. Bushuyev, D. Tan, C. J. Barrett and T. Friscic, CrystEngComm,
2015, 17, 73–80.
33 M. Baldrighi, P. Metrangolo, F. Meyer, T. Pilati, D. Proserpio,
G. Resnati and G. Terraneo, J. Fluorine Chem., 2010, 131, 1218–1224.
The authors thank the U.S. Department of Education, through a
GAANN fellowship (F.F.), and Tufts University for supporting this
research. We also thank Dr. Peter Mu¨ller (MIT) for assistance with
powder diffraction experiments and refinement strategies.
¨
34 D. W. Bruce, P. Metrangolo, F. Meyer, C. Prasang, G. Resnati,
Notes and references
1 H. Li, G. Giri, J. B. H. Tok and Z. Bao, MRS Bull., 2013, 38, 34–42.
2 J. Mei, Y. Diao, A. L. Appleton, L. Fang and Z. Bao, J. Am. Chem. Soc.,
2013, 135, 6724–6746.
G. Terraneo and A. C. Whitwood, New J. Chem., 2008, 32, 477–482.
35 A. De Santis, A. Forni, R. Liantonio, P. Metrangolo, T. Pilati and
G. Resnati, Chem. – Eur. J., 2003, 9, 3974–3983.
´
36 M. Fourmigue and P. Batail, Chem. Rev., 2004, 104, 5379–5418.
3 J. E. Anthony, Chem. Rev., 2006, 106, 5028–5048.
4 B. D. Lindner, J. U. Engelhart, O. Tverskoy, A. L. Appleton, F. Rominger,
37 D. Cao, M. Hong, A. K. Blackburn, Z. Liu, J. M. Holcroft and
J. F. Stoddart, Chem. Sci., 2014, 5, 4242–4248.
A. Peters, H. J. Himmel and U. H. F. Bunz, Angew. Chem., Int. Ed., 2011, 38 M. Porz, F. Rominger and U. H. F. Bunz, Cryst. Growth Des., 2014, 14,
50, 8588–8591. 5962–5965.
5 J. E. Anthony, J. S. Brooks, D. L. Eaton and S. R. Parkin, J. Am. 39 D. Britton and W. B. Gleason, Acta Crystallogr., Sect. C: Cryst. Struct.
Chem. Soc., 2001, 123, 9482–9483. Commun., 1991, 1–5.
6 S. Miao, A. L. Appleton, N. Berger, S. Barlow, S. R. Marder, 40 G. R. Desiraju and R. L. Harlow, J. Am. Chem. Soc., 1989, 111, 6757–6764.
K. I. Hardcastle and U. H. F. Bunz, Chem. – Eur. J., 2009, 15, 41 E. O. Schlemper and D. Britton, Acta Crystallogr., 1965, 18, 419–424.
¨
4990–4993.
42 C. B. Aakeroy, M. Baldrighi, J. Desper, P. Metrangolo and G. Resnati,
7 J. E. Anthony, D. L. Eaton and S. R. Parkin, Org. Lett., 2002, 4, 15–18.
8 L. Zhang, A. Fonari, Y. Zhang, G. Y. Zhao, V. Coropceanu, W. P. Hu, 43 C. B. Aakeroy, T. K. Wijethunga and J. Desper, J. Mol. Struct., 2014,
Chem. – Eur. J., 2013, 19, 16240–16247.
¨
S. Parkin, J. L. Bredas and A. L. Briseno, Chem. – Eur. J., 2013, 19,
1072, 20–27.
17907–17916.
44 M. J. Piao, K. Chajara, S. J. Yoon, H. M. Kim, S. J. Jeon, T. H. Kim,
K. Song, I. Asselberghs, A. Persoons, K. Clays and B. R. Cho, J. Mater.
Chem., 2006, 16, 2273–2281.
¨
¨
9 M. Gsanger, J. H. Oh, M. Konemann, H. W. Hoffken, A. M. Krause,
Z. N. Bao and F. Wu¨rthner, Angew. Chem., Int. Ed., 2010, 49, 740–743.
10 A. Facchetti, M.-H. Yoon, C. L. Stern, H. E. Katz and T. J. Marks, 45 J.-K. Fang, D.-L. An, K. Wakamatsu, T. Ishikawa, T. Iwanaga,
Angew. Chem., Int. Ed., 2003, 42, 3900–3903.
11 J. H. Park, D. H. Lee, H. Kong, M. J. Park, I. H. Jung, C. E. Park and
H. K. Shim, Org. Electron., 2010, 11, 820–830.
S. Toyota, S.-i. Akita, D. Matsuo, A. Orita and J. Otera, Tetrahedron,
2010, 66, 5479–5485.
46 T. Schabel, C. Belger and B. Plietker, Org. Lett., 2013, 15, 2858–2861.
12 O. Ostroverkhova, D. G. Cooke, F. A. Hegmann, R. R. Tykwinski, 47 D. Hauchecorne and W. A. Herrebout, J. Phys. Chem. A, 2013, 117,
S. R. Parkin and J. E. Anthony, Appl. Phys. Lett., 2006, 89, 192113.
11548–11557.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015