Organic Letters
Letter
(9) (a) Ma, G.; Deng, J.; Sibi, M. P. Angew. Chem., Int. Ed. 2014, 53,
11818. (b) Ma, G.; Sibi, M. P. Org. Chem. Front. 2014, 1, 1152.
(10) Selected examples of enantioselective conjugate addition of
malononitrile: (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003,
125, 11204. (b) Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen,
E. N. J. Am. Chem. Soc. 2005, 127, 1313. (c) Hoashi, Y.; Okino, T.;
Takemoto, Y. Angew. Chem., Int. Ed. 2005, 44, 4032. (d) Ooi, T.; Ohara,
D.; Fukumoto, K.; Maruoka, K. Org. Lett. 2005, 7, 3195. (e) Wang, J.; Li,
H.; Zu, L.; Jiang, W.; Xie, H.; Duan, W.; Wang, W. J. Am. Chem. Soc.
contrary to our original hypothesis. This accounts for the
observed stereochemical outcome of the reaction and the impact
of the size of the fluxional group on selectivity: the larger the
substituent the higher the selectivity. In the absence of MS 4 Å,
reactions occur from both a cis octahedral and trans octahedral
organization of the reactive complex with interstitial water
molecules still coordinated to the metal ion (Figure 1B). Since
these two organizations shield opposite faces, the selectivity is
modest. In the case of substrates 1b and 1d, the Brønsted base
has the potential to form a H-bond with water and leading to a
higher proportion of the trans octahedral complex and thus
leading to an inversion in stereochemistry. Geometrical
constraints may make this type of interaction less effective for
compounds 1a and 1c.
In summary, we have developed enantioselective conjugate
addition of malononitrile to pyrazolidinone-derived enoates. The
efficiency of this reaction was found to be highly dependent on
both the structure of the substituent on the fluxional nitrogen
and additives such as MS. The results suggest that inclusion of
donor atom in the fluxional group may allow for interesting
organization of chiral Lewis acid/substrate complex and ensuing
selectivity issues.
2006, 128, 12652. (f) Yang, K. S.; Nibbs, A. E.; Turkmen, Y. E.; Rawal, V.
̈
H. J. Am. Chem. Soc. 2013, 135, 16050.
(11) For details on synthesis, experimental conditions, and character-
ization data, see the Supporting Information.
(12) (a) Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem.
1998, 63, 5483. (b) Sibi, M. P.; Liu, M. Curr. Org. Chem. 2001, 5, 719.
(c) Tanaka, T.; Hayashi, M. Synlett 2008, 3361.
(13) Use of MS 3 Å or MS 5 Å instead of MS 4 Å gave nearly identical
results.
(14) Molecular sieves can act as a base. See: (a) Palomo, C.; Pazos, R.;
Oiarbide, M.; García, J. M. Adv. Synth. Catal. 2006, 348, 1161. (b) Evans,
D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583.
(c) Hasegawa, M.; Ono, F.; Kanemasa. Tetrahedron Lett. 2008, 49, 5220.
(d) García, J. M.; Maestro, M. A.; Oiarbide, M.; Odriozola, J. M.; Razkin,
J.; Palomo, C. Org. Lett. 2009, 11, 3826.
(15) The bromide counterion may be formed after the substrate
coordinates the chiral Lewis acid.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and characterization data for new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank NSF CHM-0709061 and NDSU for financial support.
■
REFERENCES
■
(1) (a) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garcia, J. M.; Linden,
A. J. Am. Chem. Soc. 2005, 127, 4154. (b) Sibi, M. P.; Chen, J.; Stanley, L.
Synlett 2007, 298. (c) Sibi, M. P.; Gustafson, B.; Coulomb, J. Bull. Korean
Chem. Soc. 2010, 31, 541−542. (d) Lee, S.; Kim, S. Org. Lett. 2008, 10,
4255.
(2) (a) Sibi, M. P.; Venkatraman, L.; Liu, M.; Jasperse, C. P. J. Am.
Chem. Soc. 2001, 123, 8444. (b) Sibi, M. P.; Stanley, L. M.; Nie, X.;
Venkatraman, L.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 2007, 129,
395. (c) Corminboeuf, O.; Quaranta, L.; Renaud, P.; Liu, M.; Jasperse,
C. P.; Sibi, M. P. Chem.Eur. J. 2003, 9, 28.
(3) (a) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2004, 126,
718. (b) Sibi, M. P.; Itoh, K.; Jasperse, C. P. J. Am. Chem. Soc. 2004, 126,
5366. (c) Sibi, M. P.; Stanley, L. M.; Soeta, T. Adv. Synth. Catal. 2006,
348, 2371. (d) Sibi, M. P.; Stanley, L. M.; Soeta, T. Org. Lett. 2007, 9,
1553. (e) Sibi, M. P.; Rane, D.; Stanley, L. M.; Soeta, T. Org. Lett. 2008,
10, 2971.
(4) Sibi, M. P.; Liu, M. Org. Lett. 2001, 3, 4181.
(5) Sibi, M. P.; Yang, Y.-H.; Lee, S. Org. Lett. 2008, 10, 5349.
(6) Suga, H.; Adachi, Y.; Fujimoto, K.; Furihata, Y.; Tsuchida, T.;
Kakehi, A.; Baba, T. J. Org. Chem. 2009, 74, 1099.
(7) (a) Sibi, M. P.; Zhang, R.; Manyem, S. J. Am. Chem. Soc. 2003, 125,
9306. (b) Sibi, M. P.; Stanley, L. M. Tetrahedron: Asymmetry 2004, 15,
3353.
(8) Sibi, M. P.; Manyem, S.; Palencia, H. J. Am. Chem. Soc. 2006, 128,
13660.
6443
dx.doi.org/10.1021/ol503275w | Org. Lett. 2014, 16, 6440−6443