64
C. Uslan et al. / Journal of Photochemistry and Photobiology A: Chemistry 235 (2012) 56–64
[6] P. Harrod-Kim, Tumor ablation with photodynamic therapy: introduction to
[26] D. Maree, T. Nyokong, K. Suhling, D. Phillips, Effects of axial ligands on the
photophysical properties of silicon octaphenoxyphthalocyanine, J. Porphyr.
Phthalocya. 6 (2002) 373–376.
[27] A. Ogunsipe, J.-Y. Chen, T. Nyokong, Photophysical and photochemical studies
of Zn(II)(II) phthalocyanine derivatives—effects of substituents and solvents,
New J. Chem. 28 (2004) 822–827.
mechanism and clinical applications, J. Vasc. Int. Radiol. 17 (2006) 1441–1448.
[7] P.S. Lai, P.J. Lou, C.L. Peng, C.L. Pai, W.N. Yen, M.Y. Huang, T.H. Young, M.J.
Shieh, Doxorubicin delivery by polyamidoamine dendrimer conjugation and
photochemical internalization for cancer therapy, J. Control. Rel. 122 (2007)
39–46.
[8] M. Bouvet, The Porphyrin Handbook, vol. 19, Academic Press, New York, 2003,
pp. 1–36.
[9] C.C. Leznoff, A.B.P. Lever, Phthalocyanines: Properties and Applications, vols.
1–4, VCH, Weinheim, 1989–1996.
[10] M. C¸ amur, V. Ahsen, M. Durmus¸ , The first comparison of photophysical and
photochemical properties of non-ionic, ionic and zwitterionic gallium(III) and
indium(III) phthalocyanines, J. Photochem. Photobiol. A 219 (2011) 217–227.
[11] F. Dumoulin, M. Durmus¸ , V. Ahsen, T. Nyokong, Synthetic pathways to water-
soluble phthalocyanines and close analogs, Coordin. Chem. Rev. 254 (2010)
2792–2847.
[12] M. Durmus¸ , V. Ahsen, Water-soluble cationic gallium(III) and indium(III)
phthalocyanines for photodynamic therapy, J. Inorg. Biochem. 104 (2010)
297–309.
[13] Z. Biyiklioglu, M. Durmus¸ , H. Kantekin, Synthesis, photophysical and photo-
chemical properties of quinoline substituted Zn(II)(II) phthalocyanines and
their quaternized derivatives, J. Photochem. Photobiol. A 211 (2010) 32–41.
[14] K. Sakamoto, T. Kato, E. Ohno-Okumura, M. Watanabe, M.J. Cook, Synthesis of
novel cationic amphiphilic phthalocyanine derivatives for next generation pho-
tosensitizer using photodynamic therapy of cancer, Dyes Pigments 64 (2005)
63–71.
[15] M. Arvand, A. Pourhabib, R. Shemshadi, The potentiometric behavior of
polymer-supported metallophthalocyanines used as anion-selective elec-
trodes, Anal. Bioanal. Chem. 387 (2007) 1033–1039.
[16] B.S. Sesalan, A. Koca, A. Gül, Water soluble novel phthalocyanines containing
dodeca-amino groups, Dyes Pigments 79 (2008) 259–264.
[17] B.S. Sesalan, A. Koca, A. Gül, Synthesis and electrochemical properties of
porphyrazines with annulated 1,4-dithiaheterocycles, Polyhedron 22 (2003)
3083–3090.
[28] H. Du, R.A. Fuh, J. Li, A. Corkan, J.S. Lindsey, PhotochemCAD: a computer-aided
design and research tool in photochemistry, Photochem. Photobiol. 68 (1998)
141–142.
[29] J.H. Brannon, D. Madge, Picosecond laser photophysics. Group 3A phthalocya-
nines, J. Am. Chem. Soc. 102 (1980) 62–65.
[30] I. Seotsanyana-Mokhosi, N. Kuznetsova, T. Nyokong, Photochemical studies of
tetra-2,3-pyridinoporphyrazines, J. Photochem. Photobiol. A: Chem. 140 (2001)
215–222.
[31] N. Kuznetsova, N. Gretsova, E. Kalmkova, E. Makarova, S. Dashkevich, V. Neg-
rimovskii, O. Kaliya, E. Luk’yanets, Relationship between the photochemical
properties and structure of porphyrins and related compounds, Russ. J. Gen.
Chem. 70 (2000) 133–140.
[32] F. Wilkinson, W.P. Helman, A.B. Ross, Quantum yields for the photosensitized
formation of the lowest electronically excited singlet state of molecular oxygen
in solution, J. Phys. Chem. Ref. Data 22 (1993) 113–262.
[33] W. Spiller, H. Kliesch, D. Wohrle, S. Hackbarth, B. Roder, G. Schnurpfeil, Sin-
glet oxygen quantum yields of different photosensitizers in polar solvents and
micellar solutions, J. Porphyr. Phthalocya. 2 (1998) 145–158.
[34] D.M. Chipman, V. Grisaro, N. Shanon, The binding of oligosaccharides contain-
ing n-acetylglucosamine and n-acetylmuramic acid to lysozyme: the specificity
of binding subsites, J. Biol. Chem. 242 (1967) 4388–4394.
[35] S.M.T. Nunes, F.S. Sguilla, A.C. Tedesco, Photophysical studies of Zn(II) phthalo-
cyanine and chloroaluminum phthalocyanine incorporated into liposomes in
the presence of additives, Braz. J. Med. Biol. Res. 37 (2004) 273–284.
[36] S. Lehrer, G.D. Fashman, The fluorescence of lysozyme and lysozyme substrate
complexes, Biochem. Biophys. Res. Commun. 23 (1966) 133–138.
[37] J.R. Lakowicz, G. Weber, Quenching of fluorescence by oxygen. Probe
for structural fluctuations in macromolecules, Biochemistry 12 (1973)
4161–4170.
[18] S.B.
Sesalan,
A.
Gül,
Synthesis
and
characterization
of
a
phthalocyanine–porphyrazine hybrid and its palladium complex, Monatsh.
Chem. 131 (2000) 1191–1195.
[19] B.S. Sesalan, A. Gül, Synthesis of novel maleonitrile derivatives, Phosphorus
Sulfur 178 (2003) 2081–2086.
[20] F. Dumoulin, M. Durmus¸ , V. Ahsen, T. Nyokong, Synthetic pathways to water-
soluble phthalocyanines and close analogs, Coord. Chem. Rev. 254 (2010)
2792–2847.
[21] C.F. Choi, J.D. Huang, P.C. Lo, W.P. Fong, D.K.P., Glycosylated Zn(II)(II) phthalo-
cyanines as efficient photosensitisers for photodynamic therapy. Synthesis,
photophysical properties and in vitro photodynamic activity, Org. Biomol.
Chem. 6 (2008) 2173–2181.
[38] C.Q. Jiang, M.X. Gao, J.X. He, Study of the interaction between terazosin and
serum albumin: synchronous fluorescence determination of terazosin, Anal.
Chim. Acta 452 (2002) 185–189.
[39] M. Gou, J.W. Zou, P.G. Yi, Z.C. Shang, G.X. Hu, Q.S. Yu, Binding inter-
action of gatifloxacin with bovine serum albumin, Anal. Sci. 20 (2004)
465–470.
[40] H. Enkelkamp, R.J.M. Nolte, Molecular materials based on crown ether func-
tionalized phthalocyanines, J. Porphyr. Phthalocya. 4 (2000) 454–459.
[41] D.D. Dominquez, A.W. Snow, J.S. Shirk, R.G.S. Pong, Polyethyleneoxide-capped
phthalocyanines: limiting phthalocyanine aggregation to dimer formation, J.
Porphyr. Phthalocya. 5 (2001) 582–592.
[22] F. Giuntini, Y. Raoul, D. Dei, M. Municchi, G. Chiti, C. Fabris, Synthesis of tetra-
substituted Zn(II)-phthalocyanines carrying four carboranyl units as potential
BNCT and PDT agents, Tetrahedron Lett. 46 (2005) 2979–2982.
[23] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, 2nd ed.,
Pergamon Press, Oxford, 1989.
[24] J.G. Young, W. Onyebuagu, Synthesis and characterization of di-disubstituted
phthalocyanines, J. Org. Chem. 55 (1990) 2155–2159.
[25] S. Fery-Forgues, D. Lavabre, Are fluorescence quantum yields so tricky to mea-
sure? A demonstration using familiar stationery products, J. Chem. Educ. 76
(1999) 1260–1264.
[42] T. Nyokong, Effects of substituents on the photochemical and photophysical
properties of main group metal phthalocyanines, Coordin. Chem. Rev. 251
(2007) 1707–1722.
[43] I. Gürol, M. Durmus¸ , V. Ahsen, T. Nyokong, Synthesis, photophysical and photo-
chemical properties of substituted Zn(II) phthalocyanines, Dalton Trans. (2007)
3782–3791.
[44] S.L. Murov, I. Carmichael, G.L. Hug, Handbook of Photochemistry, 2nd ed., M.
Decker, New York, 1993.
[45] R. Nilsson, D.R. Kearns, Role of singlet oxygen in some chemiluminescence and
enzyme oxidation reactions, J. Phys. Chem. A 78 (1974) 1681–1683.