Inorganic Chemistry
Crystallographic data for 3 and 4 (CIF)
Article
Pedersen, S. F. J. Am. Chem. Soc. 1987, 109, 6551−6553.
(d) Chassaing, J.; Bizot, D. J. Fluorine Chem. 1980, 16, 451−459.
(7) See for instance: (a) Satoh, Y.; Obora, Y. Org. Lett. 2011, 13,
2568−2571. (b) Obora, Y.; Kimura, M.; Tokunaga, M.; Tsuji, Y. Chem.
Commun. 2005, 901−902.
(8) (a) Hartwig, S.; Hillebrecht. Z. Anorg. Allg. Chem. 2008, 634,
115−120. (b) Kohler, J.; Simon, A.; van Wullen, L.; Cordier, S.;
Roisnel, T.; Poulain, M.; Somer, M. Z. Anorg. Allg. Chem. 2002, 628,
2683−2690. (c) Gibson, V. C.; Kee, T. P.; Shaw, A. Polyhedron 1990,
9, 2293−2298.
(9) Levason, W.; Reid, G.; Trayer, J.; Zhang, W. Dalton Trans. 2014,
43, 3649−3659 and references therein..
(10) (a) Tran, T. T.; Gooch, M.; Lorenz, B.; Litvinchuk, A. P.;
Sorolla, M. G., II; Brgoch, J.; Chu, P. C. W.; Guloy, A. M. J. Am. Chem.
Soc. 2015, 137, 636−639. (b) Cordier, S.; Gulo, F.; Roisnel, T.;
Gautier, R.; le Guennic, B.; Halet, J. F.; Perrin, C. Inorg. Chem. 2003,
42, 8320−8327. (c) Whangbo, M. H. Inorg. Chem. 1982, 21, 1721−
1723.
(11) (a) Beck, J.; Kusterer, C. Z. Anorg. Allg. Chem. 2006, 632, 2193−
2194. (b) Fairbrother, F. The Halides of Niobium and Tantalum. In
Halogen Chemistry; Gutmann, V., Ed.; Academic Press: London, 1967;
Cartesian coordinates of all DFT-optimized compounds
AUTHOR INFORMATION
■
̈
̈
Corresponding Author
Present Address
⊥Institut fur Anorganische Chemie, Georg-August-Universitat
̈
̈
Gottingen, Tammannstrasse 4, D-37077 Gottingen, Germany.
̈
̈
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the University of Pisa for financial support.
REFERENCES
■
Vol. 3, pp 123−178. (c) Schafer, H.; Sibbing, E.; Gerken, R. Z. Anorg.
̈
(1) Recent references include: (a) Lazreg, F.; Nahra, F.; Cazin, C. S.
J. Coord. Chem. Rev. 2015, 293−294, 48−79. (b) Nelson, D. J. Eur. J.
Inorg. Chem. 2015, 2015, 2012−2027. (c) Hackenberg, F.; Tacke, M.
Dalton Trans. 2014, 43, 8144−8153. (d) Broggi, J.; Jurcĭk, V.; Songis,
O.; Poater, A.; Cavallo, L.; Slawin, A. M. Z.; Cazin, C. S. J. J. Am. Chem.
Soc. 2013, 135, 4588−4591. (e) DePasquale, J.; Kumar, M.; Zeller, M.;
Papish, E. T. Organometallics 2013, 32, 966−979. (f) Donnelly, K.;
Petronilho, A.; Albrecht, M. Chem. Commun. 2013, 49, 1145−1159.
(g) Oehninger, L.; Rubbiani, R.; Ott, I. Dalton Trans. 2013, 42, 3269−
3284. (h) Diaz Velazquez, H.; Verpoort, F. Chem. Soc. Rev. 2012, 41,
7032−7060. (i) Hindi, K. M.; Panzner, M. J.; Tessier, C. A.; Cannon,
C. L.; Youngs, W. J. Chem. Rev. 2009, 109, 3859−3884.
Allg. Chem. 1961, 307, 163−173.
(12) (a) Cotton, F. A.; Lu, J. Inorg. Chem. 1995, 34, 2639−2644.
(b) Buslaev, Yu. A.; Glushkova, M. A.; Ovchinnikova, N. A. Russ. J.
Coord. Chem. 1975, 1, 319−322.
(13) Behzadi, K.; Ahwaz Iran, A. I. T.; Thompson, A. J. Less-Common
Met. 1986, 124, 135−139.
(14) Marchetti, F.; Pampaloni, G.; Zacchini, S. Chem. Commun. 2008,
3651−3653.
(15) (a) Bondi, R.; Marchetti, F.; Pampaloni, G.; Zacchini, S.
Polyhedron 2015, 100, 192−198. (b) Alonso, P. J.; Ara, I.; Arauzo, A.
B.; Garcia-Monforte, M. A.; Menjon, B.; Rillo, C. Angew. Chem., Int.
Ed. 2010, 49, 6143−6146. (c) Donzello, M. P.; Ercolani, C.; Chiesi-
Villa, A.; Rizzoli, C. Inorg. Chem. 1998, 37, 1347−1351. (d) Bochmann,
M.; Wilkinson, G.; Young, G. B.; Hursthouse, M. B.; Abdul Malik, K.
M. J. Chem. Soc., Dalton Trans. 1980, 901−910. (e) Manzer, L. E. Inorg.
Chem. 1977, 16, 525−528. (f) Deutscher, R. L.; Kepert, D. L. Inorg.
Chim. Acta 1970, 4, 645−650. (g) Djordjevic, C.; Katovic, V. Chem.
Commun. 1966, 224−225.
(2) (a) Bellemin-Laponnaz, S.; Dagorne, S. Chem. Rev. 2014, 114,
8747−8774. (b) Doddi, A.; Gemel, C.; Seidel, R. W.; Winter, M.;
Fischer, R. A. Polyhedron 2013, 52, 1103−1108. (c) Dodds, C. A.;
Spicer, M. D.; Tuttle, T. Organometallics 2011, 30, 6262−6269.
(d) Lorber, C.; Vendier, L. Dalton Trans. 2009, 6972−6984.
(e) Nikiforov, G. B.; Roesky, H. W.; Jones, P. G.; Magull, J.; Ringe,
A.; Oswald, R. B. Inorg. Chem. 2008, 47, 2171−2179. (f) Shukla, P.;
Johnson, J. A.; Vidovic, D.; Cowley, A. H.; Abernethy, C. D. Chem.
Commun. 2004, 360−361. (g) Abernethy, C. D.; Codd, G. M.; Spicer,
M. D.; Taylor, M. K. J. Am. Chem. Soc. 2003, 125, 1128−1129.
(h) Herrmann, W. A.; Lobmaier, G. M.; Elison, M. J. Organomet.
Chem. 1996, 520, 231−234.
(16) (a) Wells, A. F. Structural Inorganic Chemistry, 5th ed.;
Clarendon Press: Oxford, 1993. (b) Zalkin, A.; Sands, D. E. Acta
Crystallogr. 1958, 11, 615−619.
(17) Sands, D. E.; Zalkin, A. Acta Crystallogr. 1959, 12, 723−726.
(18) Schafer, H.; v. Schnering, H.-G.; Tillack, J.; Kuhnen, T.; Wohrle,
̈
̈
H.; Baumann, H. Z. Anorg. Allg. Chem. 1967, 353, 281−310.
(3) Bortoluzzi, M.; Ferretti, E.; Marchetti, F.; Pampaloni, G.;
Zacchini, S. Chem. Commun. 2014, 50, 4472−4474.
(4) (a) Pugh, D.; Wright, J. A.; Freeman, S.; Danopoulos, A. A.
(19) (a) Dastych, D.; Rotter, P.; Demo, G.; Dastychova, L. Acta
Crystallogr., Sect. E: Struct. Rep. Online 2011, E67, m1398. (b) Priebsch,
W.; Weidemann, C.; Rehder, D.; Kopf, J. Z. Naturforsch., B: J. Chem.
Sci. 1986, 41, 834−838.
(20) Computed ΔG values for the dimerization reactions 2Nb(O)
X2(dme) → [Nb(O)X2(dme)]2 were −17.7 kcal mol−1 (X = Cl) and
−15.9 kcal mol−1 (X = Br), respectively.
(21) (a) Bortoluzzi, M.; Ghini, F.; Hayatifar, M.; Marchetti, F.;
Pampaloni, G.; Zacchini, S. Eur. J. Inorg. Chem. 2013, 2013, 3112−
3118. (b) Hubert-Pfalzgraf, L. G.; Pinkerton, A. A. Inorg. Chem. 1977,
16, 1895−1897.
(22) Kilgore, U. J.; Tomaszewski, J.; Fan, H.; Huffman, J. C.;
Mindiola, D. J. Organometallics 2007, 26, 6132−6138.
(23) Schweiger, S. W.; Salberg, M. M.; Pulvirenti, A. L.; Freeman, E.
E.; Fanwick, P. E.; Rothwell, I. P. J. Chem. Soc., Dalton Trans. 2001,
2020−2031.
̈
Dalton Trans. 2006, 775−782. (b) Herrmann, W. A.; Ofele, K.; Elison,
M.; Kuhn, F. E.; Roesky, P. W. J. Organomet. Chem. 1994, 480, C7−
̈
C9.
(5) (a) Coman, S. M.; Verziu, M.; Tirsoaga, A.; Jurca, B.;
Teodorescu, C.; Kuncser, V.; Parvulescu, V. I.; Scholz, G.; Kemnitz,
E. ACS Catal. 2015, 5, 3013−3026. (b) Satoh, Y.; Obora, Y. Eur. J. Org.
Chem. 2015, 2015, 5041−5054. (c) Wilhelm, M. E.; Anthofer, M. H.;
Reich, R. M.; D’Elia, V.; Basset, J.-M.; Herrmann, W. A.; Cokoja, M.;
Kuhn, F. E. Catal. Sci. Technol. 2014, 4, 1638−1643. (d) Monassier, A.;
̈
D’Elia, V.; Cokoja, M.; Dong, H.; Pelletier, J. D. A.; Basset, J.-M.;
Kuhn, F. E. ChemCatChem 2013, 5, 1321−1324. (e) Redshaw, C.;
̈
Walton, M.; Clowes, L.; Hughes, D. L.; Fuller, A.-M.; Chao, Y.;
Walton, A.; Sumerin, V.; Elo, P.; Soshnikov, I.; Zhao, W.; Sun, W.-H.
Chem. - Eur. J. 2013, 19, 8884−8899. (f) Marchetti, F.; Pampaloni, G.
Chem. Commun. 2012, 48, 635−653 and references therein.
(g) Marchetti, F.; Pinzino, C.; Zacchini, S.; Pampaloni, G. Angew.
Chem., Int. Ed. 2010, 49, 5268−5272. (h) Fuchibe, K.; Kaneko, T.;
Mori, K.; Akiyama, T. Angew. Chem., Int. Ed. 2009, 48, 8070−8073.
(6) (a) Pedersen, S. F.; Hartung, J. B., Jr.; Roskamp, E. J.; Dragovich,
P. S. Inorg. Synth. 1992, 29, 119−123. (b) Hartung, J. B., Jr.; Pedersen,
S. F. Organometallics 1990, 9, 1414−1417. (c) Roskamp, E. J.;
(24) Bondi, A. J. Phys. Chem. 1964, 68, 441−451.
(25) The hydrolysis of the reaction mixtures facilitated the release of
the organic material from the paramagnetic metal species, thus
allowing the NMR identification of the former. This strategy has been
extensively employed for the study of the coordination chemistry of
niobium and tantalum pentahalides (ref 5f).
(26) Baird, M. C. Prog. Inorg. Chem. 1968, 9, 1−159.
I
Inorg. Chem. XXXX, XXX, XXX−XXX