K. Yamaguchi et al. / Journal of Catalysis 258 (2008) 121–130
129
Acknowledgments
This work was supported by the Core Research for Evolutional
Science and Technology (CREST) program of the Japan Science and
Technology Agency (JST) and the Grants-in-Aid for Scientific Re-
search from Ministry of Education, Culture, Sports, Science and
Technology. The authors thank T. Katayama, University of Tokyo for
his help with the experiments.
Supporting information
Please visit DOI: 10.1016/j.jcat.2008.06.004.
References
[1] M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, 1983,
pp. 1–165.
[
[
[
[
[
[
[
2] C.L. Hill, C. Chrisina, M. Prosser-McCartha, Coord. Chem. Rev. 143 (1995) 407.
3] T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113.
4] N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199.
5] R. Neumann, Prog. Inorg. Chem. 47 (1998) 317.
6] I.V. Kozhevnikov, Chem. Rev. 98 (1998) 171.
Fig. 9. Arrhenius plots for the 1-catalyzed homocoupling of 4a. Line fit:
ln(kobs) = 24.4 − 8296.5/T .
7] N. Mizuno, K. Yamaguchi, K. Kamata, Coord. Chem. Rev. 249 (2005) 1944.
8] N. Mizuno, K. Kamata, K. Yamaguchi, in: R. Richards (Ed.), Surface and
Nanomolecular Catalysis, Taylor and Francis Group, New York, 2006, pp. 463–
492.
(molecular oxygen consumed/diyne formed) stoichiometries sup-
[9] A. Tézé, G. Hervé, Inorg. Synth. 27 (1990) 85.
port the overall reactions shown in Eqs. (4) and (5).
The initial reaction rate (R0) for the homocoupling of 4a
showed a first-order dependence on the concentration of 1 (7.0–
[
10] J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Cortés, L. Lezama, T. Rojo, Coord.
Chem. Rev. 193–195 (1999) 1027.
[
11] S. Cenini, E. Gallo, A. Caselli, F. Ragaini, S. Fantauzzi, C. Piangiolino, Coord.
2
8.7 mM, Fig. 8) and was almost independent of both the con-
Chem. Rev. 250 (2006) 1234.
[
12] P. Mialane, A. Dolbecq, J. Marrot, F. Sécheresse, Angew. Chem. Int. Ed. 43 (2004)
274.
centration of 4a (0.7–2.0 M, Fig. 8) and the partial pressure of
molecular oxygen (>0.7 atm, Fig. 8). Good linearity of the Arrhe-
nius plots (observed rate constant kobs vs T ; Fig. 9) was seen,
2
[
13] P. Mialane, A. Dolbecq, J. Marrot, E. Rivière, F. Sécheresse, Chem. Eur. J. 11
(2005) 1771.
[14] P. Mialane, C. Duboc, J. Marrot, E. Rivière, A. Dolbecq, F. Sécheresse, Chem. Eur.
J. 12 (2006) 1950.
15] P. Mialane, A. Dolbecq, F. Sécheresse, Chem. Commun. (2006) 3477.
16] P. Siemsen, R.C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 39 (2000) 2632.
−
1
−
1
and the activation energy (Ea) was 68.9 kJ mol , lower than that
−1
of the homocoupling under Hay’s conditions (Ea = 87.9 kJ mol
)
[
[
[
[35]. From the kinetic data, R0 for the 1-catalyzed homocoupling
of 4a can be expressed by the following equation:
17] L. Hansen, P.M. Boll, Phytochemistry 25 (1986) 285.
[
18] H. Matsunaga, M. Katano, H. Yamamoto, H. Fujito, M. Mori, K. Takata, Chem.
Pharm. Bull. 38 (1990) 3480.
10
3
1
0
0
O2
R0 = 3.93 × 10 exp(−8.30 × 10 /T )[1] [alkyne(4a)] p
.
(6)
[19] C. Glaser, Ber. Dtsch. Chem. Ges. 2 (1869) 422.
A kinetic isotope effect was not observed for the oxidative ho-
mocoupling of ethynylbenzene (4a) and ethynylbenzene-d1 (4b)
under the conditions in Table 4 (kH/kD = 1.0), indicating that the
C–H bond cleavage is not included in the rate-limiting step [49].
These results demonstrate that the formation of a diyne from di-
copper(II)–alkynyl species [Eq. (4)] is the rate-limiting step.
[20] A.S. Hay, J. Org. Chem. 27 (1962) 3320.
21] I.D. Campbell, G. Eglinton, Org. Synth. 45 (1965) 39.
[
[
[
[
22] S.M. Auer, M. Schneider, A. Baiker, J. Chem. Soc. Chem. Commun. (1995) 2057.
23] J. Li, H. Jiang, Chem. Commun. (1999) 2369.
24] R. Salazar, L. Fomina, S. Fomine, Polym. Bull. 47 (2001) 151.
[25] A. Sharifi, M. Mirzaei, M.R. Naimi-Jamal, J. Chem. Res. (2002) 628.
[26] J.S. Yadav, B.V.S. Reddy, K.B. Reddy, K.U. Gayathri, A.R. Prasad, Tetrahedron
Lett. 44 (2003) 6493.
[
27] L. Wanga, J. Yana, P. Lia, M. Wanga, C. Su, J. Chem. Res. (2005) 112.
4
. Conclusion
[28] X. Lu, Y. Zhang, C. Luo, Y. Wang, Synth. Commun. 36 (2006) 2503.
[
[
29] R. Rossi, A. Carpita, C. Bigelli, Tetrahedron Lett. 26 (1985) 523.
30] Q. Liu, D.J. Burton, Tetrahedron Lett. 38 (1997) 4371.
In this work, the monomeric di-copper-substituted γ -Keggin
[
31] W.A. Herrmann, V.P.W. Böhm, C.V.K. Gstöttmayr, M. Grosche, C.-P. Reisinger, T.
Weskamp, J. Organomet. Chem. 618 (2001) 616.
silicotungstate with bis-μ-1,1-azido ligands 1 was synthesized, and
the molecular structure was successfully determined by the X-ray
crystallographic analysis. Complex 1 was present as a monomer,
and no dimerization occurred in organic solvents, including ace-
tonitrile, benzonitrile, and 1,2-dichloroethane. Complex 1 could act
as an effective homogeneous catalyst for the oxidative alkyne–
alkyne homocoupling. Various structurally diverse alkynes, includ-
ing aromatic, aliphatic, and heteroatom-containing ones, could be
converted into the corresponding diynes in high to excellent yields.
The catalyst could be easily separated from the reaction mixture,
and the recovered catalyst could be recycled with no significant
decrease in catalytic performance. Our findings indicate that the
di-copper core in 1 plays an important role and that the formation
of the di-copper(II)–alkynyl species {Cu(II)2(μ-C≡CR)2} is the key
step in the oxidative alkyne–alkyne homocoupling.
[32] A. Lei, M. Srivastava, X. Zhang, J. Org. Chem. 67 (2002) 1969.
[33] I.J.S. Fairlamb, P.S. Bäuerlein, L.R. Marrison, J.M. Dickinson, Chem. Commun.
(2003) 632.
[
[
34] J. Li, Y. Liang, X.-D. Zhang, Tetrahedron 61 (2005) 1903.
35] J.-H. Li, Y. Liang, Y.-X. Xie, J. Org. Chem. 70 (2005) 4393.
[36] K. Kamata, S. Yamaguchi, M. Kotani, K. Yamaguchi, N. Mizuno, Angew. Chem.
Int. Ed. 47 (2008) 2407.
[37] D.D. Perrin, W.L.F. Armarego (Eds.), Purification of Laboratory Chemicals, third
ed., Pergamon Press, Oxford, 1988, pp. 80–388.
[38] L. Casella, O. Carugo, M. Gullotti, S. Garofani, P. Zanello, Inorg. Chem. 32 (1993)
2056.
[39] I.D. Brown, D. Altermatt, Acta Crystallogr. Sect. B: Struct. Sci. 41 (1985) 244.
40] N.E. Brese, M. O’Keeffe, Acta Crystallogr. Sect. B: Struct. Sci. 47 (1991) 192.
[
[
41] D.K. Lyon, W.K. Miller, T. Novet, P.J. Domaille, E. Evitt, D.C. Johnson, R.G. Finke,
J. Am. Chem. Soc. 113 (1991) 7209.
[42] D.-L. Long, C. Streb, Y.-F. Song, S. Mitchell, L. Cronin, J. Am. Chem. Soc. 130
(2008) 1830.