Shen et al.
FULL PAPER
mercial sources and used without further purification.
CDCl
3
) δ: 3.61-3.55 (m, 1H), 3.37 (s, 3H), 2.56-2.48
1
13
H NMR (400 MHz) and C NMR (100 MHz) spectra
were obtained on a Bruker DRX-400 NMR using CDCl
(m, 2H), 2.25-2.19 (m, 2H), 2.09-2.01 (m, 2H),
1.94-1.85 (m, 2H).
1-Benzoylpyrrolidine-2-carbaldehyde
(400 MHz, CDCl ) δ: 9.68 (s, 1H), 7.59-7.57 (m, 2H),
7.45-7.40 (m, 3H), 4.66 (t, J=6.8 Hz, 1H), 3.66-
3.53 (m, 2H), 2.24-2.16 (m, 1H), 2.07-2.00 (m, 1H),
1.96-1.89 (m, 2H); C NMR (100 Hz, CDCl ) δ:
3
1
as the solution with TMS as an internal reference. Col-
umn chromatography was performed with 300-400
mesh silica gel. GC analysis was measured on Agilent
H NMR
3
7
0
890N. General GC conditions: HP-5 column, 30 m×
.32 mm (id); FID detector; injection: 0.2 μL; carrier
1
3
3
2
gas: N ; carrier gas rate: 1.2 mL/min; area normalization.
1
2
99.3, 170.1, 135.6, 130.4, 128.2, 127.2, 65.0, 50.0,
6.2, 25.3.
The reactions were detected under the conditions: col-
umn temperature: 75 ℃ for 2 min, rising to 300 ℃ at
a rate of 10 ℃/min.
1
2
-Phenylacetaldehyde
H NMR (400 MHz,
CDCl ) δ: 9.75 (s, 1H), 7.39-7.21 (m, 5H), 3.68 (d,
J=2 Hz, 2H); C NMR (100 Hz, CDCl ) δ: 199.4,
3
1
3
3
Procedure for the catalytic oxidation of alcohols
1
31.8, 129.6, 129.0, 127.4, 50.5.
A mixture of alcohols (1 mmol), 4-benzamido-
TEMPO (0.02 mmol, 5.5 mg) and HCl (3.7%, 0.02
mmol, 20 mg) in DCM (1 mL) were powerfully stirred
at room temperature, aq. sodium bromate (0.35 mmol,
1
Octanal H NMR (400 MHz, CDCl ) δ: 9.75 (s,
3
1
1
H), 2.42-2.41 (m, 2H), 1.63-1.61 (m, 2H), 1.29-
.27 (m, 8H), 0.87 (t, J=7.2 Hz, 3H); C NMR (100
13
Hz, CDCl ) δ: 202.9, 43.8, 31.5, 29.0, 28.9, 22.5, 22.0,
3
0
.5 mL) was added once. The mixture was continuously
1
4.0.
2S,5R)-2-Isopropyl-5-methylcyclohexanone
NMR (400 MHz, CDCl ) δ: 2.30 (d, J=12.8 Hz, 1H),
and powerfully stirred for a certain period of time, the
conversion and selectivity of the product were detected
by GC. After completion of the reaction, H O (10 mL)
2
and DCM (10 mL) were added, the organic layer was
separated and the aqueous layer extracted with di-
chloromethane (10 mL×2). The combined organic ex-
tracts were dried over anhydrous sodium sulfate, filtered,
and concentrated under reduced pressure. The residue
was purified on silica gel column chromatography (pe-
troleum/EtOAc=10/1) to give the corresponding alde-
1
(
H
3
2
6
3
3
.13-1.78 (m, 6H), 1.35-1.28 (m, 2H), 0.96 (d, J=
.4 Hz, 3H), 0.89 (d, J=6.8 Hz, 3H), 0.83 (d, J=6.8 Hz,
H); C NMR (100 Hz, CDCl ) δ: 212.2, 55.7, 50.7,
1
3
3
5.3, 33.8, 27.7, 25.8, 22.1, 21.1, 18.6.
1
Ethyl 2-oxopropanoate
CDCl ) δ: 4.32-4.26 (q, J=7.2 Hz, 2H), 2.44 (d, J=
H NMR (400 MHz,
3
0
.8 Hz, 3H), 1.34 (t, J=7.2 Hz, 3H).
hydes or ketones.
1
4
-Nitrobenzaldehyde H NMR (400 MHz, CDCl
3
)
Acknowledgement
δ: 10.15 (s, 1H), 8.39 (d, J=7.6 Hz, 2H), 8.07 (d, J=
13
We are grateful to the financial support from the Na-
tional Natural Science Foundation of China (No.
21072055) and the National High Technology Research
and Development Program of China (863 Program) (No.
8
1
3
.4 Hz, 2H); C NMR (100 Hz, CDCl ) δ: 190.2, 151.1,
40.0, 130.4, 124.2.
2
1
-Chlorobenzaldehyde
CDCl
J=8.4 Hz, 1H), 7.44 (d, J=8 Hz, 1H), 7.37 (t, J=8 Hz,
1
1
H NMR (400 MHz,
3
) δ: 10.47 (s, 1H), 7.91 (d, J=8 Hz, 1H), 7.51 (t,
2
008AA06Z306).
1
3
H); C NMR (100 Hz, CDCl
3
) δ: 189.8, 137.9, 135.1,
References
32.4, 130.6, 129.3, 127.2.
1
Nicotinaldehyde H NMR (400 MHz, CDCl
3
) δ:
[1] Sheldon, R. A.; Kochi, J. K. Metal-catalyzed Oxidation of Organic
Compounds, Academic Press, New York, 1981; (b) Hudlicky, M.
Oxidations in Organic Chemistry, ACS, Washington, DC, 1990; (c)
Backväll, J. E. Modern Oxidation Methods, Wiley-VCH, New York,
2004; (d) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037.
1
8
1
0.10 (s, 1H), 9.07 (s, 1H), 8.83 (d, J=4.8 Hz, 1H),
.16 (d, J=8 Hz, 1H), 7.46-7.49 (dd, J
1
=J
2
=4.8 Hz,
H).
1
Benzophenone
H NMR (400 MHz,CDCl ) δ:
3
[
2] (a) Skibida, I. P.; Sakharow, A. M. Catal. Today 1996, 27, 187; (b)
Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J.
Science 1996, 274, 2044; (c) Markó, I. E.; Giles, P. R.; Tsukazaki,
M.; ChelléRegnaut, I.; Gautier, A.; Brown, S. M.; Urch, C. J. J. Org.
Chem. 1999, 64, 2433; (d) Noyori, R.; Aoki, M.; Sato, K. Chem.
Commun. 2003, 1977; (e) Mallat, T.; Baiker, A. Chem. Rev. 2004,
104, 3037; (f) Jiang, N.; Ragauskas, A. J. Tetrahedron Lett. 2005, 46,
7
.80 (d, J=8 Hz, 4H), 7.58 (t, J=8 Hz, 2H), 7.48 (t,
J=7.6 Hz, 4H).
1
1
,7,7-Trimethylbicyclo[2.2.1]heptan-2-one
H
3
NMR (400 MHz, CDCl ) δ: 2.32 (d, J=2.4 Hz, 1H),
2
.28-2.27 (m, 1H), 2.10-2.00 (m, 1H), 1.91-1.88
(
m, 1H), 1.82-1.77 (m, 1H), 1.67-1.60 (m, 1H),
3
323; (g) Velusamy, S.; Kumar, A. V.; Saini, R.; Punniyamurthy, T.
1
3
4
.36-1.32 (m, 2H), 0.91 (s, 3H), 0.86 (s, 3H), 0.79 (s,
13
Tetrahedron Lett. 2005, 46, 3819; (h) Miao, C.-X.; He, L.-N.; Wang,
J.-Q.; Wang, J.-L. Adv. Synth. Catal. 2009, 315, 2209; (i) Hoover, J.
M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901; (j) Wang, L.;
Zhang, W.; Zeng, S.; Su, D.; Meng, X.; Xiao, F. Chin. J. Chem. 2012,
3
H); C NMR (100 Hz, CDCl ) δ: 57.6, 46.7, 43.2,
3.0, 29.9, 27.0, 19.7, 19.1, 9.2.
(
1R)-1,3,3-Trimethylbicyclo[2.2.1]heptan-2-one
H NMR (400 MHz, CDCl ) δ: 2.10-2.08 (m, 1H),
.78-1.63 (m, 3H), 1.54-1.47 (m, 2H), 1.37-1.30
m, 1H), 1.09 (s, 3H), 0.98 (s, 6H).
1
3
3
0, 2189; (k) Steves, J. E.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135,
1
(
1
5742.
[3] Hayashi, M.; Shibuya, M.; Iwabuchi, Y. J. Org. Chem. 2012, 77,
1
4
-Methoxycyclohexanone
H NMR (400 MHz,
3005.
408
www.cjc.wiley-vch.de
© 2014 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2014, 32, 405—409