Organic Letters
Letter
(8) For selected reviews on asymmetric MCRs, see: (a) Ramon, D. J.;
́
Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602. (b) de Graaff, C.;
Ruijter, E.; Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969.
(9) For selected reviews on the application of MCRs to DOS, see:
(a) Sunderhaus, J. D.; Martin, S. F. Chem. - Eur. J. 2009, 15, 1300.
(b) Biggs-Houck, J. E.; Younai, A.; Shaw, J. T. Curr. Opin. Chem. Biol.
2010, 14, 371. (c) O'Connor, C. J.; Beckmann, H. S. G.; Spring, D. R.
Chem. Soc. Rev. 2012, 41, 4444.
formed (the N-benzyl substituent on the indole ring is away
from the ester group of the iminoester; see Figure 2, TS1).
With subsequent proton transfer through the PPA catalyst, the
four-component product is formed with efficient asymmetric
control through this dual hydrogen bonding activation mode.
In summary, we have developed an extremely efficient
strategy for the construction of 3,3-disubstituted mixed 3,3′-
bisindoles by a Rh(II)/chiral phosphoric acid cocatalyzed
enantioselective four-component reaction of indoles, 3-
diazooxindoles, arylamines, and ethyl glyoxylate. With this
method, a series of highly valuable 3-(2-arylamino-)-3-indol-3′-
yloxindoles were synthesized in good yields with excellent
diastereoselectivities and high to excellent enantioselectivities.
This transformation is proposed to proceed through electro-
philic trapping of zwitterionic intermediates generated from
metal carbenes and indoles with iminoesters derived from
arylamines and ethyl glyoxylate. With its high efficiency in
accessing complicated chiral products in one step, this
transformation may have great potential in the synthesis of
related natural products and diversity-oriented synthesis of
complicated chiral compounds.
(10) Muthusamy, S.; Gunanathan, C.; Babu, S. A.; Suresh, E.;
Dastidar, P. Chem. Commun. 2002, 824.
(11) DeLorbe, J. E.; Jabri, S. Y.; Mennen, S. M.; Overman, L. E.;
Zhang, F.-L. J. Am. Chem. Soc. 2011, 133, 6549.
(12) Chen, D.-F.; Zhao, F.; Hu, Y.; Gong, L.-Z. Angew. Chem., Int. Ed.
2014, 53, 10763.
(13) For reviews, see: (a) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46,
2427. (b) Xing, D.; Hu, W. Tetrahedron Lett. 2014, 55, 777. (c) Qiu,
H.; Li, M.; Jiang, L.-Q.; Lv, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M. P.;
Hu, W.-H. Nat. Chem. 2012, 4, 733. (d) Jia, S.; Xing, D.; Zhang, D.;
Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13098.
(14) Xing, D.; Jing, C.; Li, X.; Qiu, H.; Hu, W. Org. Lett. 2013, 15,
3578.
(15) Ren, L.; Lian, X.-L.; Gong, L.-Z. Chem. - Eur. J. 2013, 19, 3315.
(16) Zhuang, W.; Poulsen, T. B.; Jorgensen, K. A. Org. Biomol. Chem.
2005, 3, 3284.
(17) Kang, Q.; Zhao, Z.-A.; You, S.-L. Tetrahedron 2009, 65, 1603.
(18) CCDC 1044173 (5t) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(19) The formation of the iminoester was appraently incomplete
even after reacting 3b and 4 for 20 h. For a detailed monitoring of the
1
Experimental procedures and full spectroscopic data for
Crystallographic data for 5t (CIF)
iminoester formation by H NMR spectroscopy, see Scheme S1 of
Hu, W. H. Chem. Commun. 2008, 6564.
(20) The reaction time of the control experiment was set to 1 h to
keep in line with the reaction time of the four-component reaction.
(21) For a theoretical calculation of the Rh-enolated form of a similar
active intermediate, see: Ma, X.; Jiang, J.; Lv, S.; Yao, W.; Yang, Y.; Liu,
S.; Xia, F.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13136.
(22) For a computational modelling study of chiral PPA-catalyzed
transfer hydrogenation of α-iminoesters, see: Shibata, Y.; Yamanaka,
M. J. Org. Chem. 2013, 78, 3731.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for financial supports from NSF of China
(21125209, 21332003, and 21402051), the MOST of China
(2011CB808600), and STCSM (12JC1403800).
REFERENCES
■
(1) (a) Bindra, J. S. The Alkaloids, Vol. 14; Manske, R. H. F., Ed.;
Academic Press: New York, 1973; pp 84−121. (b) Kobayashi, M.;
Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Chem.
Pharm. Bull. 1994, 42, 2449. (c) Arai, T.; Yamamoto, Y.; Awata, A.;
Kamiya, K.; Ishibashi, M.; Arai, M. A. Angew. Chem., Int. Ed. 2013, 52,
2486.
(2) For reviews, see: (a) Steven, A.; Overman, L. E. Angew. Chem.,
Int. Ed. 2007, 46, 5488. (b) Ruiz-Sanchis, P.; Savina, S. A.; Albericio,
́
F.; Alvarez, M. Chem. - Eur. J. 2011, 17, 1388. (c) Zhou, F.; Liu, Y.-L.;
Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
(3) Overman, L. E.; Shin, Y. Org. Lett. 2007, 9, 339.
(4) Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc. 2011, 133,
20611.
(5) Song, L.; Guo, Q.-X.; Li, X.-C.; Tian, J.; Peng, Y.-G. Angew.
Chem., Int. Ed. 2012, 51, 1899.
(6) Guo, C.; Song, J.; Huang, J.-Z.; Chen, P.-H.; Luo, S.-W.; Gong,
L.-Z. Angew. Chem., Int. Ed. 2012, 51, 1046.
(7) Liu, R.; Zhang, J. Org. Lett. 2013, 15, 2266.
D
Org. Lett. XXXX, XXX, XXX−XXX