Page 5 of 5
Please d Co h ne omt Ca do j mu s mt margins
COMMUNICATION
Journal Name
induced circular dichroism (CD) spectra. As shown in Fig. S8†, CD extended for development of a wide varietyDoOfI:T1P0.f1u0n3c9t/iCo6nCaCl p03ro74b6eAs
signal of RNA appear in range of 200-300 nm, and plus and minus for detecting different RNAs or specific RNA sequence by
two signals confirm spiral chain characteristics of RNA. Due to aggregation-disaggregation method.
induction of RNA, cotton peaks of the probe HVC-6 at 400 (-) and
70 (+) nm corresponded to its absorption peaks bound with RNA. 21172063), Taishan Scholar Foundation (TS 201511041), doctor
The results demonstrate that HVC-6 is capable of detecting nucleic start up fund of University of Jinan (160082102). NSFSP
Funding was partially provided by NSFC (51503077, 21472067,
4
acid based on intercalative binding.
(ZR2015PE001), and general start up fund of the University of Jinan.
Photostability is an important criterion measuring an excellent
probe. In vitro, the probe exhibits good one- and two-photon
photostability (Fig.S9†). Next, we investigate photostability in living
cells, commercially available RNA probe SYTO RNA-Select as control.
As shown in Fig. 6, SYTO RNA-Select exhibits significant
photobleaching with only 40% signal intensity remaining.
Fluorescence signals of HVC-6 only decreased 8%. The results prove
that the probe HVC-6 shows higher photostability than
commercially available RNA probe.
Notes and references
1
(a) Q. Li, Y. Kim, J. Namm, A. Kulkarni, G. R. Rosania, Y. H. Ahn
and Y. T. Chang, Chem. Biol., 2006, 13, 615; (b) J. Yu, D.
Parker, R. Pal, R. A. Poole and M. J. Cann, J. Am. Chem. Soc.,
2006, 128, 2294.
2
(a) Q. Wan, S. Chen, W. Shi, L. Li and H. Ma, Angew. Chem.
Int. Ed., 2014, 53, 10916; (b) M. Yu, X. Wu, B. Lin, J. Han, L.
Yang and S. Han, Anal. Chem., 2015, 87, 6688.
3
4
Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011,
40, 5361.
C. W. T. Leung, Y. Hong, S. Chen, E. Zhao, J. W. Y. Lam and B.
Z. Tang, J. Am. Chem. Soc., 2013, 135, 62.
5
6
A. Z. Medvedev, Adv. Gerontol. Res., 1964, 21, 181.
E. Robert, Johnston and R. B. Henry, Proc. Nat. Acad. Sci.
USA., 1972, 69, 1514.
7
8
R. Dahm, Human Genetics, 2008, 122, 565.
D. A. Melton, P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn
and M. R. Green, Nuleic. Acids. Res., 1984, 12, 7035.
(a) S. Cervantes, J. Prudhomme, D. Carter, K. G. Gopi, Q. Li
and Y. T. Chang, BMC. Cell. Biology., 2009, 10, 45; (b) Q. Li, Y.
Kim, J. Namm, A. Kulkarni, G. R. Rosania, Y.-H. Ahn and Y.-T.
Chang, Chem. Biol., 2006, 13, 615; (c) Z. Li, S. Sun, Z. Yang, S.
Zhang, H. Zhang, M. Hu, J. Cao, J. Wang, F. Liu, F. Song, J. Fan
and X. Peng, Biomaterials, 2013, 34, 6473; (d) S. Zhang, J. Fan,
Z. Li, N. Hao, J. Cao, T. Wu, J. Wang and X. Peng, J. Mater.
9
Fig. 6 Comparison of photobleaching of HVC-6 and SYTO RNA-Select
in confocal fluorescence microscopy imaging. Cells stained with 5
μM probe for 30 min; λex = 488 nm; λem = 490-600 nm; Scale bar =
2
0 μm.
Chem. B, 2014,
M. Chen, F. Miao, W. Zhang, X. Yu and J. Jin, Biomaterials,
014, 35, 2103; (f) L. Li, J. Feng, H. Liu, Q. Li, L. Tong and B.
Tang, Chem. Sci., 2016, , 1940.
0 R. P. Haugland, in the handbook, A Guide to Fluorescent
Probes and Labeling Technologies, ed. M. T. Z. Spence, 10tH.,
2, 2688; (e) G. Song, Y. Sun, Y. Liu, X. Wang,
In TP imaging, we have demonstrated that the probe can image
2
RNA in living cells at 800 nm excitation (Fig. S10†). To demonstrate
the utility of this probe tissues imaging, the mouse liver tissue slices
are treated with the probe HVC-6. All of these experiments are
performed in compliance with the relevant laws and institutional
guidelines, and are approved by the Animal Ethical Experimentation
Committee of Shandong University. And fluorescence images of the
tissue slices are acquired at 800 nm excitation. Significant
fluorescence is observed up to 100 μm in green channel (Fig. S11†).
Thus, taken together, the results demonstrate that the probe can
image RNA in living tissues.
7
1
1
2
005, pp.710-711.
1 (a) H. Yu, Y. Xiao and L. Jin, J. Am. Chem. Soc., 2012, 134
7486; (b) H. -Y. Ahn, K. E. Fairfull-Smith, B. J. Morrow, V.
,
1
Lussini, B. Kim, M. V. Bondar, S. E. Bottle and K. D. Belfield, J.
Am. Chem. Soc., 2012, 134, 4721; (c) Y. H. Lee, W. X. Ren, J.
Han, K. Sunwoo, J. -Y. Lim, J. -H. Kim and J. S. Kim, Chem.
Commun., 2015, 51, 14401.
2 Y. Zhang, J. Wang, P. Jia, X. Yu, H. Liu, X. Liu, N. Zhao and B.
Huang, Org. Biomol. Chem., 2010, 8, 4582.
In summary, we have rationally engineered a novel TP
fluorescent probe HVC-6, which remarkably display two different
emission peaks to aggregate and solution states in the presence and
absence of RNA for the first time. And the probe shows sensitivity
1
1
3 T. Y Ohulchanskyy, H. E. Pudavar, S. M. Yarmoluk, V. M.
Yashchuk, E. J. Bergey, P. N. Prasad, Photochem. Photobiol.,
(
Detection limit: 0.2 μM) for monitoring RNA at 488 nm and 800 nm
2003, 77, 138.
excitation. These unique attributes enable the probe to be
employed to one- and two-photon image endogenous RNA in living
systems. In addition, compare with commercially available RNA
probe SYTO RNA-select, the probe HVC-6 exhibits higher sensitivity
1
4
X. Y. Shen, W. Z. Yuan, Y. Liu, Q. Zhao, P. Lu, Y. Ma, I. D. Williams,
A. Qin, J. Z. Sun and B. Z. Tang, J. Phys. Chem. C., 2012, 116,
10541.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins