C O M M U N I C A T I O N S
Scheme 3. Conversion of the Aglain to the Forbaglin and
Rocaglamide Ring Systems
droxyflavones. Methodology has been developed to transform the
initially formed aglain structures to rocaglamide derivatives using
a base-mediated R-ketol rearrangement. Further studies, including
asymmetric synthesis of the rocaglamides and further applications
of the photocycloaddition process, are in progress and will be
reported in due course.
Acknowledgment. We thank Dr. John Beutler (NCI) and Profs.
Scott Schaus and John Snyder (Boston University) for helpful
discussions, Drs. Emil Lobkovsky (Cornell) and Richard Staples
(Harvard) for X-ray crystal structure analyses, Prof. Jonathan Lee
(Boston University) for assistance with NMR experiments, and
Bristol-Myers Squibb for an Unrestricted Grant in Synthetic Organic
Chemistry (J.A.P, Jr.).
Scheme 4. Synthesis of (()-Methyl Rocaglate
Supporting Information Available: Experimental procedures and
characterization data for all new compounds (PDF), including X-ray
crystal structure coordinates and files in CIF format. This material is
References
(1) Proksch, P.; Edrada, R.; Ebel, R.; Bohnenstengel, F. I.; Nugroho, B. W.
Curr. Org. Chem. 2001, 5, 923-938.
(2) King. M. L.; Chiang, C. C.; Ling, H. C.; Fugita, E.; Ochiai, M.; McPhail,
A. T. J. Chem. Soc., Chem. Commun. 1982, 1150-1151.
(3) Hwang, B. Y.; Su, B.-N.; Chai, H.; Mi, Q.; Kardono, L. B. S.; Afriastini,
J. J.; Riswan, S.; Santarsiero, B. D.; Mesecar, A. D.; Wild, R.; Fairchild,
C. R.; Vite, G. D.; Rose, W. C.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto,
J. M.; Swanson, S. M.; Kinghorn, A. D. J. Org. Chem. 2004, 69, 3350-
3358.
systems (Scheme 3). Treatment of aglain 15 with Pb(OAc)4 in
benzene/MeOH11 at room temperature afforded benzo[b]oxepines
17 and 18 as a 2:1 mixture of keto-enol tautomers (85%).
Attempted thermal acyloin rearrangement17 of 15 did not afford
any observable ketol shift product. Alternate treatment of 15 with
protic or Lewis acidic conditions (BF3‚Et2O, ZnCl2) resulted in
decomposition of starting material. However, treatment of 15 under
basic conditions (2.5 equiv of NaOMe,15 MeOH), afforded a 1:1
mixture of keto-enol tautomers 19 and 20. The success of such
basic conditions for R-ketol rearrangement may be explained by
formation of the enolate of 20 under basic conditions, which may
drive the ketol shift equilibrium18 toward the rocaglamide core.
Further proof for this assumption was provided by treatment of 15
with NaH (2.1 equiv, THF, rt) and quenching the reaction mixture
with thionyl chloride to afford the stable 1,3,2-dioxathiolane 21
(48%).19 Hydroxyl-directed reduction8b of 19/20 afforded rocaglate
22 (95%).
We next proceeded to evaluate 3-HF derivatives with trimethoxy
substitution suitable for the synthesis of the rocaglamides and related
compounds (Scheme 4). Photoirradiation (uranium filter) of kaempfer-
ol20 derivative 7 and methyl cinnamate 13 (MeOH, 0 °C) afforded
the aglain 23, as well as benzo[b]cyclobutapyran-8-one 24 (33%
and 17%, respectively) after purification on SiO2. Basic conditions
(NaOMe, MeOH) were used to effect R-ketol rearrangement of both
23 and 24 to afford a mixture of endo and exo cycloadducts 25 in
which the endo isomer was obtained as a mixture of keto-enol
tautomers.14 Reduction of 25 afforded (()-methyl rocaglate 26
(51%) and the corresponding exo stereoisomer 27 (27%).8a,14
Spectral data for synthetic 26 were in full agreement with those
reported for natural methyl rocaglate.21
(4) Dumontet, V.; Thoison, O.; Omobuwajo, O. R.; Martin, M.-T.; Perromat,
G.; Chiaroni, A.; Riche, C.; Pais, M.; Sevenet, T.; Hadi, A. H. Tetrahedron
1996, 52, 6931-6942.
(5) Lee, S. K.; Cui. B.; Mehta, R. R.; Kinghorn. A. D.; Pezzuto. J. M. Chem.-
Biol. Interact. 1998, 115, 215-228.
(6) Baumann, B.; Bohnenstengel, F.; Siegmund, D.; Wajant, H.; Weber, C.;
Herr, I.; Debatin, K.-M.; Proksch, Wirth, T. J. Biol. Chem. 2002, 277,
44791-44800.
(7) Bacher, M.; Hofer, O.; Brader, G.; Vajrodaya, S.; Greger, H. Phytochem-
istry 1999, 52, 253-263.
(8) (a) Kraus, G. A.; Sy, J. O. J. Org. Chem. 1989, 54, 77-83. (b) Trost, B.
M.; Greenspan, P. D.; Yang, B, V.; Saulnier, M. G. J. Am. Chem. Soc.
1990, 112, 9022-9024. (c) Hailes H, C.; Raphael, R. A.; Staunton, J.
Tetrahedron Lett. 1993, 34, 5313-5316.
(9) (a) Chou, P.-T. J. Chin. Chem. Soc. 2001, 48, 651-682. (b) Bader, A.;
Ariese, F.; Gooijer, C. J. Phys. Chem. A 2002, 106, 2844-2849 and
references therein.
(10) (a) Hendrickson, J.; Farina, J. S. J. Org. Chem. 1980, 45, 3359-3361.
(b) Sammes, P. G.; Street, L. J. J. Chem. Soc., Perkin. Trans. 1 1983,
1261-1265. (c) Wender, P. A.; Jesudason, C. D.; Nakahira, H. J. Am.
Chem. Soc. 1997, 119, 12976-12977.
(11) Baer, E. J. Am Chem. Soc. 1940, 62, 1597-1606.
(12) (a) Paquette, L. A.; Hofferberth, J. E. Org. React. 2003, 62, 477-567.
(b) For ketol shifts in biogenesis, see: Rentzea, M.; Hecker, E. Tetrahedron
Lett. 1982, 23, 1785-1788.
(13) (a) K252a: Tamaki, K.; Huntsman, E. W. D.; Petsch, D. J.; Wood, J. L.
Tetrahedron. Lett, 2002, 43, 379-382. (b) Taxanes: Paquette, L.;
Hofferberth, J. E. J. Org. Chem. 2003, 68, 2266-2275.
(14) See Supporting Information for details.
(15) Creary, X.; Inocencio, P. A.; Underiner, T. L.; Kostromin, R. J. Org.
Chem. 1985, 50, 1932-1938.
(16) Further experiments to support the ESIPT mechanism were conducted
using 3-methoxyflavone (3-MF). Irradiation (350 nm, MeCN, 5 equiv of
13, rt) did not afford a [3+2] cycloaddition product but instead provided
a product resulting from oxidative photocycloaddition, see: Matsuura,
T.; Takemoto, T. Tetrahedron 1973, 3337-3340.
(17) Lui, J.; Mander, L. N.; Willis, A. C. Tetrahedron 1998, 54, 11637-11650.
(18) Piers, E.; Romero, M. A.; Walker, S. D. Synlett 1999, 7, 1082-1084.
(19) Shipman, M.; Thorpe, H.; Clemens, I. Tetrahedron 1999, 55, 10845-
10850.
(20) Lee, Y.-J.; Wu, T.-D. J. Chin. Chem. Soc. 2001, 48, 201-206.
(21) Ishibashi, F.; Satasook, C.; Isman, M. B.; Towers, G. H. N. Phytochemistry
1993, 32, 307-310.
In conclusion, we have developed a biomimetic approach to the
aglain/rocaglamide/forbaglin classes of natural products. The key
strategy involves dipolar cycloaddition of oxidopyrylium ylides
derived from excited-state intramolecular proton transfer of 3-hy-
JA044798O
9
J. AM. CHEM. SOC. VOL. 126, NO. 42, 2004 13621