Organic Letters
Letter
Notes
P(4-MeOC
6
H
4
)
3
, 54%; PCy
3
, 24%; P(4-CF
3
C
6
H
4
)
3
, 30%; P(2-furyl) ,
3
2
%; P(OPh) , 23%; Xantphos, 32%.
3
The authors declare no competing financial interest.
(10) (a) Kuninobu, Y.; Nakahara, T.; Takeshima, H.; Takai, K. Org.
Lett. 2013, 15, 426. (b) Murai, M.; Takeshima, H.; Morita, H.;
Kuninobu, Y.; Takai, K. J. Org. Chem. 2015, 80, 5407. For our recent
work on the rhenium-catalyzed dehydrogenative borylation of
C(sp )−H bonds adjacent to nitrogen atom, see: (c) Murai, M.;
Omura, T.; Kuninobu, Y.; Takai, K. Chem. Commun. 2015, 51, 4583.
ACKNOWLEDGMENTS
■
2
This work was financially supported by a Grant-in-Aid (No.
5105739) from MEXT, Japan, and the MEXT program for
3
promoting the enhancement of research universities. We
gratefully thank Mr. Naoki Hosokawa (Okayama University)
for HRMS measurements and Prof. Koichi Mitsudo and Prof.
Seiji Suga (Okayama University) for CV measurements.
(11) During the review of the current manuscript, Hartwig et al.
reported enantioselective silylation of C(sp )−H bonds leading to
benzoxasiloles. See: Lee, T.; Wilson, T. W.; Berg, R.; Ryberg, P.;
2
Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 6742.
(12) Metallocenes with two different substituents in the one
cyclopentadienyl ring are chiral due to the loss of the plane of
symmetry. For representative pioneering works, see: (a) Thomson, J.
B. Tetrahedron Lett. 1959, 1, 26. (b) Cahn, R. S.; Ingold, C.; Prelog, V.
Angew. Chem., Int. Ed. Engl. 1966, 5, 385. For reviews, see:
REFERENCES
■
(
1) For reviews on the bioorganometallic chemical applications, see:
a) van Staveren, D. R.; Metzler-Nolte, N. Chem. Rev. 2004, 104, 5931.
b) Fouda, M. F. R.; Abd-Elzaher, M. M.; Abdelsamaia, R. A.; Labib, A.
A. Appl. Organomet. Chem. 2007, 21, 613. (c) Gasser, G.; Ott, I.;
Metzler-Nolte, N. J. Med. Chem. 2011, 54, 3. (d) Braga, S. S.; Silva, A.
M. S. Organometallics 2013, 32, 5626.
2) (a) Hayashi, T., Togni, A., Eds. Ferrocenes; VCH: Weinheim,
995. (b) Togni, A.; Halterman, R. L., Eds. Metallocenes; VCH:
Weinheim, 1998. (c) Step
008. (d) Dai, L.-X., Hou, X.-L., Eds. Chiral Ferrocenes in Asymmetric
Catalysis; Wiley: New York, 2010.
3) (a) Volz, H.; Draese, R. Tetrahedron Lett. 1975, 16, 3209.
b) Volz, H.; Kowarsch, H. J. Organomet. Chem. 1977, 136, C27.
c) Eberhard, L.; Lampin, J.-P.; Mathey, F. J. Organomet. Chem. 1974,
0, 109. (d) Yasuike, S.; Hagiwara, J.-i.; Danjo, H.; Kawahata, M.;
Kakusawa, N.; Yamaguchi, K.; Kurita, J. Heterocycles 2009, 78, 3001.
4) (a) Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am.
Chem. Soc. 2010, 132, 14324. (b) Kuninobu, Y.; Yoshida, T.; Takai, K.
J. Org. Chem. 2011, 76, 7370. (c) Kuninobu, Y.; Yamauchi, K.; Tamura,
N.; Seiki, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 1520.
(
(c) Atkinson, R. C. J.; Gibson, V. C.; Long, N. J. Chem. Soc. Rev. 2004,
(
3
3, 313. (d) Schaarschmidt, D.; Lang, H. Organometallics 2013, 32,
5
668.
(13) Planar chiral metallocenes are useful as catalysts and ligands. For
the representative examples, see: (a) Dai, L.-X.; Tu, T.; You, S.-L.;
Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. 2003, 36, 659. (b) Colacot, T.
J. Chem. Rev. 2003, 103, 3101. (c) Fu, G. C. Acc. Chem. Res. 2004, 37,
(
1
̌
̌ ̌
nicka, P., Ed. Ferrocenes; Wiley: Chichester,
5
́ ́
42. (d) Gomez Arrayas, R.; Adrio, J.; Carretero, J. C. Angew. Chem.,
2
Int. Ed. 2006, 45, 7674. (e) Fu, G. C. Acc. Chem. Res. 2006, 39, 853.
See also ref 1d.
(
(14) Catalytic synthesis of planar-chiral ferrocenes via the C−H bond
(
(
8
activation has been reported. For the palladium-catalyzed asymmetric
arylation of C−H bonds, see: (a) Bringmann, G.; Hinrichs, J.; Peters,
K.; Peters, E.-M. J. Org. Chem. 2001, 66, 629. (b) Gao, D.-W.; Shi, Y.-
C.; Gu, Q.; Zhao, Z.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 86.
(
(
c) Ma, X.; Gu, Z. RSC Adv. 2014, 4, 36241. (d) Deng, R.; Huang, Y.;
Ma, X.; Li, G.; Zhu, R.; Wang, B.; Kang, Y.-B.; Gu, Z. J. Am. Chem. Soc.
014, 136, 4472. (e) Gao, D.-W.; Yin, Q.; Gu, Q.; You, S.-L. J. Am.
2
Chem. Soc. 2014, 136, 4841. (f) Liu, L.; Zhang, A.-A.; Zhao, R.-J.; Li,
F.; Meng, T.-J.; Ishida, N.; Murakami, M.; Zhao, W.-X. Org. Lett. 2014,
(
d) Kuninobu, Y.; Iwanaga, T.; Omura, T.; Takai, K. Angew. Chem., Int.
Ed. 2013, 52, 4431. (e) Murai, M.; Matsumoto, K.; Okada, R.; Takai,
K. Org. Lett. 2014, 16, 6492. For our recent work on the iridium-
1
6, 5336. For asymmetric C−H bond insertion of carbene, see:
2
(g) Siegel, S.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1997, 36, 2456.
For the palladium-catalyzed asymmetric Heck-type alkenylation of C−
H bonds, see: (h) Pi, C.; Li, Y.; Cui, X.; Zhang, H.; Han, Y.; Wu, Y.
Chem. Sci. 2013, 4, 2675. (i) Shibata, T.; Shizuno, T. Angew. Chem., Int.
Ed. 2014, 53, 5410. For a review, see: (j) Arae, S.; Ogasawara, M.
Tetrahedron Lett. 2015, 56, 1751.
catalyzed intermolecular dehydrogenative silylation of C(sp )−H
bonds, see: (f) Murai, M.; Takami, K.; Takai, K. Chem.Eur. J.
2
015, 21, 4566. (g) Murai, M.; Takami, K.; Takeshima, H.; Takai, K.
Org. Lett. 2015, 17, 1798.
5) For reviews on the dehydrogenative silylation of C−H bonds,
see: (a) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077.
6) (a) Yamaguchi, S.; Itami, Y.; Tamao, K. Organometallics 1998, 17,
910. (b) Tamao, K.; Yamaguchi, S. Pure Appl. Chem. 1996, 68, 139.
c) Amb, C. M.; Chen, S.; Graham, K. R.; Subbiah, J.; Small, C. E.; So,
(
(
15) When (R)-DTBM-SEGPHOS and 3,3-dimethyl-1-butene were
used as ligand and hydrogen acceptor, respectively, 2a was obtained in
3% yield with 50% ee.
16) Effect of metal complexes with (R)-DTBM-SEGPHOS at 70
C: [Rh(OMe)(cod)] , 79%, 52% ee (S major); [Rh(OTf)(cod)] ,
7
(
(
4
(
°
4
2
p
2
6%, 21% ee (Sp major); [IrCl(cod)] , 44%, 3% ee (Rp major);
2
F.; Reynolds, J. R. J. Am. Chem. Soc. 2011, 133, 10062. (d) Shimizu,
M.; Mochida, K.; Katoh, M.; Hiyama, T. J. Phys. Chem. C 2010, 114,
0004 and references cited therein.
[
Ir(OMe)(cod)] , 35%, 5% ee (R major).
2
p
(17) The reaction of 2-(hydrodimethylgermyl)phenylferrocene 4 in
1
(
the presence of [RhCl(cod)] and the chiral phosphines listed in
2
7) During our detailed investigation, we have learned that Prof.
Figure 2 afforded the inseparable mixture of products.
Takanori Shibata (Waseda University, Japan) also examined the
rhodium-catalyzed asymmetric synthesis of ferrocene-fused benzosi-
loles. We thank Prof. Shibata for providing this information prior to
their publication. For their recent report, see: (a) Shibata, T.; Shizuno,
T.; Sasaki, T. Chem. Commun. 2015, 51, 7802. Part of our current
work has already been reported: 95th Annual Meeting of the Chemical
Society of Japan; Chemical Society of Japan: Tokyo, March 2015; 2E5−
(
18) The absolute configuration of 2b, 2c, 2d, and 6 was deduced
from the configuration of 2a, which was assigned in ref 7a.
19) (a) Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132,
7092. (b) Kuznetsov, A.; Gevorgyan, V. Org. Lett. 2012, 14, 914.
20) The reaction with PPh (15 mol%) in place of (R)-DTBM-
(
1
(
3
SEGPHOS at 50 °C for 4 h gave 7% yield of 2a (from 1a) and 16%
yield of 8 (from 7). The conversion of 7 was slower than that of 1a
only when (R)-DTBM-SEGPHOS was used as a ligand (Scheme 1),
probably because the bulky rhodium center having a (R)-DTBM-
SEGPHOS ligand distorted the rhodacycle intermediate generated
from 7 and decreases its stability. Thus, we believe the present reaction
3
3. During the review of the current manuscript, He et al. reported
enantioselective silylation of ferrocene using the rhodium−chiral
phosphine catalyst system. See: (b) Zhang, Q.-W.; An, K.; Liu, L.-C.;
Yue, Y.; He, W. Angew. Chem., Int. Ed. 2015, 54, 6918.
(
8) The frontier energy levels for dibenzogermoloferrocene (X =
2
mechanism contains C(sp )−H bond activation, a mechanism similar
GeH in Figure 1) are −5.26 eV (HOMO) and −0.68 eV (LUMO),
2
to that reported in ref 19.
respectively.
(
9) Effect of other achiral ligands on the dehydrogenative silylation of
hydrosilane 1a with [RhCl(cod)] in dioxane at 70 °C: PPh , 48%;
2
3
D
Org. Lett. XXXX, XXX, XXX−XXX