2268
V. J. Lillo et al. / Tetrahedron Letters 50 (2009) 2266–2269
References and notes
R
R
R
R
R
O
R
OH
1. For reviews, see: (a) Foubelo, F.; Yus, M. Trends Org. Chem. 1998, 7, 1–26; (b)
Foubelo, F.; Yus, M. Curr. Org. Chem. 2005, 9, 459–490; For a monograph, see:
(c) Strohmann, C.; Schildbach, D. In The Chemistry of Organolithium Compounds;
Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, UK, 2004; pp 941–996.
2. Dilithium intermediates can be considered functionalised organolithium
compounds. For reviews, see: (a) Nájera, C.; Yus, M. Trends Org. Chem. 1991,
2, 155–181; (b) Nájera, C.; Yus, M. Org. Prep. Proced. Int. 1995, 27, 383–457; (c)
Nájera, C.; Yus, M. Recent Res. Dev. Org. Chem. 1997, 1, 67–96; (d) Yus, M.;
Foubelo, F. Rev. Heteroatom Chem. 1997, 17, 73–107; (e) Nájera, C.; Yus, M. Curr.
Org. Chem. 2003, 7, 867–926; (f) Nájera, C.; Sansano, J. M.; Yus, M. Tetrahedron
2003, 59, 9255–9303; (g) Chinchilla, R.; Nájera, C.; Yus, M. Chem. Rev. 2004, 104,
2667–2722; (i) See also the special issue of Tetrahedron Symposium-in-Print
(Nájera, C., Yus, M., Eds.) devoted to ‘Functionalised Organolithium
Compounds’, Tetrahedron. 2005, 61, 3139–3450.; (j) Yus, M.; Foubelo, F. In
Functionalised Organometallics; Knochel, P., Ed.; Wiley-VCH: Weinheim, 2005.
Chapter 2; (k) Foubelo, F.; Yus, M. Chem. Soc. Rev. 2008, 37, 2620–2633.
3. For general monographs on the preparation of organolithium compounds, see:
(a) Wakefield, B. J. Organolithium Methods; Academic: London, 1988; (b)Lithium
Chemistry: A Theoretical and Experimental Overview; Sapse, A. M., von Ragué
Schleyer, P., Eds.; J. Wiley & Sons: New York, NY, 1995; (c) Gray, M.; Tinkel, M.;
Sniekus, V.. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F.
G. A., Wilkinson, G., McKillop, A., Eds.; Pergamon: Oxford, 1995; Vol. 11, pp 1–
92; (d) Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon: Oxford,
2002; (e)The Chemistry of Organolithium Compounds; Rappopoprt, Z., Marek, I.,
Eds.; Wiley: Chichester, UK, 2004.
i
HO
R
R
3e (93%)
3i (85%)
2e, 2i
Scheme 2. Reagents and conditions: (i) 85% H3PO4, Et2O, rt, 1d (for 2e) or 4 h (for
2i).
4. (a) Neugebauer, W.; Kos, A. J.; von Rague Schleyer, P. J. Organomet. Chem. 1982,
228, 107–118; (b) Schaub, T.; Radius, U. Tetrahedron Lett. 2005, 46, 8195–8197.
5. (a) Iyoda, M.; Kabir, S. M. H.; Vorasingha, A.; Kuwatami, Y.; Yoshida, M.
Tetrahedron Lett. 1998, 39, 5393–5396; (b) Kabir, S. M. H.; Hasegawa, M.;
Kuwatani, Y.; Yoshida, M.; Matsuyama, H.; Iyoda, M. J. Chem. Soc., Perkin Trans.
1 2001, 159–165; (c) Hudrlik, P. F.; Dai, D.; Hudrlik, A. M. J. Organomet. Chem.
2006, 691, 1257–1264.
6. For the last paper on this topic from our laboratory, see: Lillo, V. J.; Gómez, C.;
Yus, M. Tetrahedron Lett. 2008, 49, 5182–5185.
7. For reviews, see: (a) Yus, M. Chem. Soc. Rev. 1996, 25, 155–161; (b) Ramón, D. J.;
Yus, M. Eur. J. Org. Chem. 2000, 225–237; (c) Yus, M. Synlett 2001, 1197–1205;
(d) Yus, M.; Ramón, D. J. Lat. J. Chem. 2002, 79–92; (e) Ramón, D. J.; Yus, M. Rev.
Cubana Quim. 2002, 14, 75–115; (f) Yus, M.. In The Chemistry of Organolithium
Compounds; Rappoport, Z., Marek, I., Eds.; J. Wiley & Sons: Chichester, 2004;
Vol. 1,. Part 2, Chapter 11 For mechanistic studies, see: (g) Yus, M.; Herrera, R.
P.; Guijarro, A. Tetrahedron Lett. 2001, 42, 3455–3458; (h) Yus, M.; Herrera, R.
P.; Guijarro, A. Chem. Eur. J. 2002, 8, 2574–2584; (i) Yus, M.; Herrera, R. P.;
Guijarro, A. Tetrahedron Lett. 2003, 44, 1309–1312; (j) Yus, M.; Herrera, R. P.;
Guijarro, A. Tetrahedron Lett. 2003, 44, 1313–1316; (k) Yus, M.; Herrera, R. P.;
Guijarro, A. Tetrahedron Lett. 2003, 44, 5025–5027; (l) Melero, C.; Guijarro, A.;
Baumann, V.; Pérer-Jiménez, A. J.; Yus, M. Eur. J. Org. Chem. 2007, 5514–5526;
(m) Melero, C.; Herrera, R. P.; Guijarro, A.; Yus, M. Chem. Eur. J. 2007, 13, 10096–
10107; For a polymer supported arene-catalysed version of this reaction, see:
(n) Gómez, C.; Ruiz, S.; Yus, M. Tetrahedron Lett. 1998, 39, 1397–1400; (o)
Gómez, C.; Ruiz, S.; Yus, M. Tetrahedron 1999, 55, 7017–7026; (p) Yus, M.;
Candela, P.; Gómez, C. Tetrahedron 2002, 58, 6207–6210; (q) Alonso, F.; Gómez,
C.; Candela, P.; Yus, M. Adv. Synth. Catal. 2003, 345, 275–279; (r) Candela, P.;
Gómez, C.; Yus, M. Russ. J. Org. Chem. 2004, 40, 795–801.
3i
Chart 3. X-ray structure of oxepine 3i.
In the second part of this study we carried out the dehydration
of some diols 2 in order to get the corresponding oxygen-contain-
ing heterocycles. Thus, treatment of diols 2e and 2i with 85% phos-
phoric acid in ether at room temperature gave the expected
dibenzoxepines 3e and 3i, respectively (Scheme 2).11,12
The structure of compound 3i was confirmed by X-ray analysis
(Chart 3).
In summary, we have described herein the easy generation of a
2,20-dilithiobiphenyl using a very simple methodology, the DTBB-
catalysed lithiation of commercially available biphenylene. This
dianion has been trapped with different electrophiles, especially
carbonyl compounds affording interesting diols that were easily
cyclised under acidic conditions to yield the expected oxepines.
Compared to other possible methodologies (transmetallation,
deprotonation or halogen–lithium exchange), the here reported
generation of the dilithiated species I is the most convenient one
concerning the atom-economy philosophy.13
8. General procedure for compounds 2: To a dark green suspension of lithium
powder (49 mg, 7 mmol) and DTBB (13 mg, 0.05 mmol) in THF (1 mL) was
added dropwise a solution of biphenylene (77 mg, 0.5 mmol) in THF (2 mL) and
the mixture was stirred for 2 h at rt. The corresponding electrophile (1.1 mmol,
except for compound 2a and 2b, where direct work-up or 0.5 ml of D2O was
used, respectively) was then added at 0 °C and it was stirred at the same
temperature for 30 min. The resulting mixture was hydrolysed with water
(5 mL) allowing the temperature to rise to rt. The mixture was extracted with
EtOAc (3 ꢀ 10 mL), the organic layer dried with MgSO4 and solvents were
evaporated in vacuo to yield
a residue that was purified by column
chromatography (silica gel, hexane–EtOAc) to afford the title products.
9. The monosubstituted products (2, with one E = H) would be formed by
abstraction of one hydrogen from the reaction medium (probably from THF at
Acknowledgements
the a-position; see, for instance: Clayden, J.; Yasin, S. A. New J. Chem. 2002, 26,
191–192), before or after quenching with one molecule of the electrophile.
10. (a) Ishikawa, M.; Tabohashi, T.; Sugisawa, H.; Nishimura, K.; Kumada, M. J.
Organomet. Chem. 1983, 250, 109–119; For additional reactions involving
pentaorganosilicates, see: (b) Maercker, A.; Stötzel, R. Chem. Ber. 1987, 120,
1695–1706; (c) Vedejs, E.; Daugulis, O.; Diver, S. T.; Powell, D. R. J. Org. Chem.
1998, 63, 2338–2341; (d) van Klink, G. P. M.; de Boer, H. J. R.; Schat, G.;
Akkerman, O. S.; Bickelhaupt, F.; Spek, A. L. Organometallics 2002, 21, 2119–
2135. .
This work was generously supported by the Spanish Ministerio
de Educación y Ciencia (MEC; grants CTQ2007-65218/BQU and
Consolider Ingenio 2010, CSD2007-00006). V. L. thanks the Univer-
sity of Alicante for a predoctoral fellowship. We also thank Medal-
chemy S.L. for a gift of chemicals, especially lithium powder.
_
Supplementary data
+
Supplementary data (analytical, physical and spectroscopic data
for compounds 2 and 3, as well as the corresponding literature ref-
erences for known compounds) associated with this article can be
Li
Si
Me3
II