Communication
ChemComm
2 (a) J. Vangindertael, R. Camacho, W. Sempels, H. Mizuno, P. Dedecker
and K. P. F. Janssen, Methods Appl. Fluoresc., 2018, 6, 022003;
(b) D. Baddeley and J. Bewersdorf, Annu. Rev. Biochem., 2018, 87,
965–989; (c) G. Huszka and M. A. M. Gijs, Microsyst. Nanoeng., 2019, 2,
7–28; (d) S. J. Sahl, S. W. Hell and S. Jakobs, Nat. Rev. Mol. Cell Biol., 2017,
18, 685–701.
3 (a) C. Li, A. G. Tebo and A. Gautier, Int. J. Mol. Sci., 2017, 18, 1473;
(b) G. Zhang, S. Zheng, H. Liu and P. R. Chen, Chem. Soc. Rev., 2015,
44, 3405–3417.
fluorescent sulfoxide products. Further studies revealed a marked
difference between the photooxidizability of the free tetrazine
and the bioconjugated pyridazine forms, which implies a two-
orders of magnitude fluorescence increase due to this new
fluorogenic mechanism. This unique fluorogenic behavior allows
selective photoactivation of specifically conjugated probes, as
demonstrated in the labeling schemes of actin filaments with
low background fluorescence even under no-wash conditions.
A remarkable feature of the developed ‘‘ClickOx’’ probes is that
the same commercial green excitation laser (552 nm) is suitable
for carrying out photooxidation of the probes and subsequent
excitation of the product. An added value of the present probe is
that it is also suitable for STED super-resolution microscopy
using a 660 nm depletion laser. Since it is the lack of availability
of good probes that is considered among the limitations of
further improvements of resolution, we believe that discovery of
new mechanisms and design elements such as the presented
photo-activation mechanism is an important step towards
improved probes. Currently, we are exploring the potential of
the new ClickOx probe in targeted photodynamic therapy and in
light-assisted indication of oxidative stress-triggered inflamma-
tion in cells and tissues, the results of which are to be published
in due course.
´
4 (a) K. Lang and J. W. Chin, Chem. Rev., 2014, 114, 4764–4806; (b) I. Nikic,
´
T. Plass, O. Schraidt, J. Szymanski, J. A. Briggs, C. Schultz and E. A. Lemke,
Angew. Chem., Int. Ed., 2014, 53, 2245–2249; (c) J. W. Chin, Annu. Rev.
Biochem., 2014, 83, 379–408.
5 (a) E. Kozma, O. Demeter and P. Kele, ChemBioChem, 2017, 18, 486–501;
(b) A.-C. Knall and C. Slugovc, Chem. Soc. Rev., 2013, 42, 5131–5142.
6 (a) E. Kozma and P. Kele, Org. Biomol. Chem., 2019, 17, 215–233;
(b) A. Wieczorek, P. Werther, J. Euchner and R. Wombacher, Chem. Sci.,
2017, 8, 1506–1510; (c) J. C. Carlson, L. G. Meimetis, S. A. Hilderbrand
and R. Weissleder, Angew. Chem., Int. Ed., 2013, 52, 6917–6920.
7 (a) L. Wang, M. S. Frei, A. Salim and K. J. Johnsson, J. Am. Chem.
´
Soc., 2019, 141, 2770–2781; (b) G. B. Cserep, A. Herner and P. Kele,
Methods Appl. Fluoresc., 2015, 3, 042001.
8 (a) L. G. Meimetis, J. C. Carlson, R. J. Giedt, R. H. Kohler and
R. Weissleder, Angew. Chem., Int. Ed., 2014, 53, 7531–7534; (b) Y. Lee,
W. Cho, J. Sung, E. Kim and S. B. Park, J. Am. Chem. Soc., 2018, 140,
´
´
974–983; (c) S. J. Siegl, J. Galeta, R. Dzijak, A. Vazquez, M. Del Rıo-
ˇ
Villanueva, M. Dracnisk´y and M. Vrabel, ChemBioChem, 2019, 20,
886–890; (d) G. Knorr, E. Kozma, A. Herner, E. A. Lemke and P. Kele,
Chem. – Eur. J., 2016, 22, 8972–8979; (e) G. Knorr, E. Kozma,
´
¨ ¨
J. M. Schaart, K. Nemeth, G. Torok and P. Kele, Bioconjugate Chem.,
2018, 29, 1312–1318.
The present work was supported by the ‘‘Lendu¨let’’ Program
of the Hungarian Academy of Sciences (LP2013-55/2013) and the
National Research, Development and Innovation Office (NKFIH-
+
´
9 (a) O. Demeter, A. Kormos, C. Koehler, G. Mezo, K. Nemeth,
E. Kozma, L. Takacs, E. A. Lemke and P. Kele, Bioconjugate Chem.,
2017, 28, 1552–1559; (b) A. Kormos, C. Koehler, E. A. Fodor,
+
Z. R. Rutkai, M. E. Martin, G. Mezo, E. A. Lemke and P. Kele,
´
K-123917). DK is grateful for the support of the UNKP-19-2 New
Chem. – Eur. J., 2018, 24, 8841–8847.
10 E. Kozma, G. Estrada Girona, G. Paci, E. A. Lemke and P. Kele,
Chem. Commun., 2017, 53, 6696–6699.
11 (a) T. Iwaoka and M. Kondo, Bull. Chem. Soc. Jpn., 1974, 47, 980–986;
(b) R. W. Redmond and J. N. Gamlin, Photochem. Photobiol., 1999,
70, 391–475.
National Excellence Program of the Ministry for Innovation and
Technology.
12 (a) T. Manju, N. Manoj, A. M. Braun and E. Oliveros, Photochem.
Photobiol. Sci., 2012, 11, 1744–1755; (b) E. Baciocchi, T. Del Giacco,
O. Lanzalunga, A. Lapi and D. Raponi, J. Org. Chem., 2007, 72, 5912–5915.
13 C. Liu, X. Jiao, Q. Wang, K. Huang, S. He, L. Zhao and X. Zeng, Chem.
Commun., 2017, 53, 10727–10730.
Conflicts of interest
There are no conflicts to declare.
14 A. Gollmer, J. Arnbjerg, F. H. Blaikie, B. W. Pedersen,
T. Breitenbach, K. Daasbjerg, M. Glasius and P. R. Ogilby, Photo-
chem. Photobiol., 2011, 87, 671–679.
Notes and references
1 (a) E. A. Specht, E. Braselmann and A. E. Palmer, Annu. Rev. Physiol.,
´
2017, 79, 93–117; (b) P. O. Bayguinov, D. M. Oakley, C. C. Shih, 15 I. Kraljic and S. El Mohsni, Photochem. Photobiol., 1978, 28, 577–581.
ˇ
D. J. Geanon, M. S. Joens and J. A. J. Fitzpatrick, Curr. Protoc. Cytom., 16 A. N. Butkevich, M. L. Bossi, G. Lukinavicius and S. W. Hell, J. Am.
2018, 85, e39.
Chem. Soc., 2019, 141, 981–989.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020