In-Si-Catalyzed Direct Substitutions of Alcohols
TABLE 1. Allylation by Using Combined Lewis Acida
yield
(%)
entry
catalyst (mol %)
InCl3 (5)
InCl3 (5)
InCl3 (5) + Me3SiBr (10) hexane
Me3SiBr (10) hexane
InCl3 (5) + Me3SiBr (10) CH2Cl2
InCl3 (5) + Me3SiBr (10) toluene
InCl3 (5) + Me3SiBr (10) MeCN
InCl3 (5) + Me3SiBr (10) Et2O
InCl3 (5) + Me3SiBr (10) THF
solvent
conditions
1b
2
3
4
5
6
7
8
9
ClCH2CH2Cl 80 °C, 3 h
hexane
51
0
77
0
66
66
22
2
reflux, 8 h
rt, 2 h
rt, 8 h
rt, 2 h
rt, 2 h
rt, 2 h
rt, 2 h
rt, 2 h
FIGURE 1. Lewis acid-mediated allylation of alcohol.
0
a Reactions were carried out in a solvent (1 mL) with allylsilane 2 (2.0
mmol) and alcohol 1a (1.0 mmol). b See ref 15a.
Direct substitution of alcohols with allylsilane was first
demonstrated by Cella,6 which some groups have also devel-
oped.7 All examples, however, have required excessive amounts
of Lewis acids. To avoid the excessive use of acid, the hydroxy
moieties have to be transformed into their corresponding good
leaving groups, such as halogens or related moieties, before
treatment with nucleophiles (Figure 1).8-11 The development
of an efficient and practical method for the catalytic substitution
of alcohols is in demand and still a challenging goal.
version promoted by the combination catalyst of InCl3 and
Me3SiBr.16 Herein, we wish to report the systematic studies,
including NMR observation, of combined active species and
some characteristic applications to chemoselective reactions.
Results and Discussion
Although a few examples of catalytic allylations of alcohols
with allyltrimethylsilane were reported using such acids as HN-
1. Catalytic Allylation of Alcohols with Allyltrimethylsi-
lane. We have previously reported the direct allylation of
1-phenylethanol (1a) with allyltrimethylsilane (2) in 1,2-
dichloroethane at 80 °C in the presence of a catalytic amount
of InCl3 (Table 1, entry 1).15a When the solvent was changed
to hexane, no reaction was observed even under reflux condi-
tions (entry 2). To our delight, however, the combined use of
InCl3 and Me3SiBr as a catalyst was found to give the desired
product 3a in 77% yield at room temperature (entry 3). Since
Me3SiBr did not exhibit any catalytic ability on its own, the
combination was essential for the allylation (entry 4).17 It is
noteworthy that halogenated solvent was no longer requisite
because only moderate yield was obtained in CH2Cl2 (entry 5).
While the reaction in toluene gave 3a in 66% yield (entry 6),
the use of coordinative solvents resulted in low yields (entries
7-9). In particular, strong coordination of Et2O and THF
completely shut down the reaction. Other Lewis acids, such as
BF3‚OEt2, AlCl3, GaCl3, Yb(OTf)3,18 Sc(OTf)3, ZnCl2, BiCl3,19
12
(SO2F)2 and B(C6F5)3,10 these procedures are limited to the
employment of alcohols possessing strong cation-stabilizing
aromatic substituents.13,14 We have recently overcome this
problem by developing the InCl3-catalyzed direct substitution
of various alcohols.15 In any case of direct allylations, including
ours, the use of environmentally hazardous halogen-containing
solvents, such as dichloromethane or 1,2-dichloroethane, is
essential. In this context, the development of a new direct
substitution method of alcohols and the replacement of the
halogenated solvent are both very important objectives. Re-
cently, we have preliminarily developed a non-halogenated
(6) Cella, J. A. J. Org. Chem. 1982, 47, 2125-2130.
(7) (a) Braun, M.; Kotter, W. Angew. Chem., Int. Ed. 2004, 43, 514-
517. (b) Toshimitsu, A.; Nakano, K.; Mukai, T.; Tamao, K. J. Am. Chem.
Soc. 1996, 118, 2756-2757. (c) Pilli, R. A.; Robello, L. G. Synlett 2005,
2297-2300. (d) Bisaro, F.; Prestat, G.; Vitale, M.; Poli, G. Synlett 2002,
1823-1826. (e) Gullickson, G. C.; Lewis, D. E. Aust. J. Chem. 2003, 56,
385-388. (f) Mu¨hlthau, F.; Schuster, O.; Bach, T. J. Am. Chem. Soc. 2005,
127, 9348-9349.
(8) (a) Dau-Schmidt, J.-P.; Mayr, H. Chem. Ber. 1994, 127, 205-212.
(b) Mayr, H.; Dau-Schmidt, J.-P. Chem. Ber. 1994, 127, 213-217. (c) Mayr,
H.; Pock, R. Tetrahedron 1986, 42, 4211-4214. (d) Yamamoto, Y.; Onuki,
S.; Yumoto, M.; Asao, N. Heterocycles 1998, 47, 765-780. (e) Yamamoto,
Y.; Onuki, S.; Yumoto, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 421-
422. (f) Yamamoto, Y.; Maruyama, K.; Matsumoto, K. J. Chem. Soc., Chem.
Commun. 1984, 548-549.
(16) Saito, T.; Yasuda, M.; Baba, A. Synlett 2005 1737-1739.
(17) Mukaiyama and we have reported the InCl3-Me3SiCl combined
Lewis acid catalyst for Hosomi-Sakurai, Friedel-Crafts, and Mukaiyama
aldol reaction in which the Lewis acidity of the silicon center would be
enhanced by the coordination of chlorine on silicon to the indium. See: (a)
Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Tetrahedron 2002, 58, 8227-
8235. (b) Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Eur. J. Org. Chem.
2002, 1578-1581. (c) Miyai, T.; Onishi, Y.; Baba, A. Tetrahedron Lett.
1998, 39, 6291-6294. (d) Miyai, T.; Onishi, Y.; Baba, A. Tetrahedron
1999, 55, 1017-1026. (e) Mukaiyama, T.; Ohno, T.; Nishimura, T.; Han,
J. S.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1991, 64, 2524-2527. (f)
Mukaiyama, T.; Ohno, T.; Han, J. S.; Kobayashi, S. Chem. Lett. 1991, 20,
949-952. For other reports of combination of indium and silicon, see: (g)
Lee, P. H.; Seomoon, D.; Kim, S.; Nagaiah, K.; Damle, S. V.; Lee, K.
Synthesis 2003, 2189-2193. (h) Lee, P. H.; Lee, K.; Sung, S.-y.; Chang,
S. J. Org. Chem. 2001, 66, 8646-8649. (i) Sakai, N.; Annaka, K.;
Konakahara, T. Tetrahedron Lett. 2006, 47, 631-634. (j) Bandini, M.;
Fagioli, M.; Melloni, A.; Umani-Ronchi, A. Synthesis 2003, 397-402.
(18) For a report of the combination of Yb(OTf)3-Me3SiCl or Yb-
(OTf)3-Me3SiOTf, see: Yamanaka, M.; Nishida, A.; Nakagawa, M. Org.
Lett. 2000, 2, 159-161.
(9) Schwier, T.; Rubin, M.; Gevorgyan, V. Org. Lett. 2004, 6, 1999-
2001.
(10) Rubin, M.; Gevorgyan, V. Org. Lett. 2001, 3, 2705-2707.
(11) Kim, S. H.; Shin, C.; Pae, A. N.; Koh, H. Y.; Chang, M. H.; Chung,
B. Y.; Cho, Y. S. Synthesis 2004, 1581-1584.
(12) Kaur, G.; Kaushik, M.; Trehan, S. Tetrahedron Lett. 1997, 38,
2521-2524.
(13) For example, HN(SO2F)2, B(C6F5)3, and InBr3 did not catalyze the
reaction of the acid-sensitive alcohol such as 1-phenylethanol.
(14) For reports of other catalytic substitution of alcohol, see: (a) Georgy,
M.; Boucard, V.; Campagne, J.-M. J. Am. Chem. Soc. 2005, 127, 14180-
14181. (b) Marquet, J.; Moreno-Man˜as, M. Chem. Lett. 1981, 10, 173-
176.
(15) (a) Yasuda, M.; Saito, T.; Ueba, M.; Baba, A. Angew. Chem., Int.
Ed. 2004, 43, 1414-1416. (b) Yasuda, M.; Somyo, T.; Baba, A. Angew.
Chem., Int. Ed. 2006, 793-796. (c) Yasuda, M.; Yamasaki, S.; Onishi, Y.;
Baba, A. J. Am. Chem. Soc. 2004, 126, 7186-7187. (d) Yasuda, M.; Onishi,
Y.; Ueba, M.; Miyai, T.; Baba, A. J. Org. Chem. 2001, 66, 7741-7744.
(19) Recently, direct allylation of 1-phenylethanol (1a) was achieved
using BiCl3 in CH2Cl2. See: De, S. K.; Gibbs, R. A. Tetrahedron Lett.
2005, 46, 8345-8350.
J. Org. Chem, Vol. 71, No. 22, 2006 8517