The Versatility of Solid-State Metathesis Reactions: From Rare Earth Fluorides to Carbodiimides
Table 4. Atomic distances /pm, (multiplicity) and angles /° in struc-
tures of LaF(CN2) and LiPr2F3(CN2)2.
LaF(CN2)
La(1)ϪF(1)
La(1)ϪN(1)
C(1)ϪN(1)
258.7(4) (2x), 263.3(6) (1x)
259.7(4) (4x), 267.8(5) (2x)
122.0(6) (2x)
180
N(1)ϪC(1)ϪN(1)
LiPr2F3(CN2)2
Pr(1)ϪF(3)
Pr(1)ϪF(2)
Pr(1)ϪN(1)
Pr(1)ϪN(2)
N(1)ϪC(1)
N(2)ϪC(1)
Li(1)ϪF(2)
Li(1)ϪF(3)
Li(1)ϪN(2)
Li(1)ϪN(1)
N(2)ϪC(1)ϪN(1)
234.37(7)
243.4(2), 250.1(2), 256.3(2)
254.9(2), 261.4(2), 262.4(2)
256.0(2), 261.3(2)
123.4(4)
121.7(4)
195.5(2) (2x)
Figure 5. Coordination environment of Pr (left) and Li (right) in
the structure of LiPr2F3(CN2)2.
199.5(8)
Table 3. Atom positions and equivalent isotropic displacement pa-
257.7(6) (2x), 303.5(3) (2x)
316.5(4) (2x), 343.3(6) (2x)
178.3(3)
rameters /104 pm2 in structures of LaF(CN)2 and LiPr2F3(CN2)2.
x
y
z
Ueq
LaF(CN)2
La(1)
F(1)
N(1)
C(1)
0
0.2222(1)
0.4193(6)
0.1322(6)
0
1/4
1/4
0.0124(4)
0.016(1)
1/2
1/2
1/2
0.4475(7) 0.015(1)
1/2 0.011(1)
References
LiPr2F3(CN2)2
Pr(1)
F(2)
F(3)
N(1)
N(2)
C(1)
Li(1)
0.2869(1)
0.1861(2)
1/2
0.0042(1)
0.1670(1) 0.0066(8)
[1] M. Neukirch, S. Tragl, H.-J. Meyer, Inorg. Chem. 2006, 45,
8188.
0.1223(2) Ϫ0.1342(2) 0.0117(3)
0.1020(3) 1/4 0.0120(5)
0.1377(2) Ϫ0.2982(3) 0.0377(3) 0.0098(4)
[2] R. Srinivasan, J. Glaser, S. Tragl, H.-J. Meyer, Z. Anorg. Allg.
Chem. 2005, 631, 479.
Ϫ0.0867(2) Ϫ0.2024(3) Ϫ0.1321(3) 0.0134(5)
0.0245(3) Ϫ0.2498(3) Ϫ0.458(4) 0.0101(5)
0
[3] R. Srinivasan, M. Ströbele, H.-J. Meyer, Inorg. Chem. 2003,
42, 3406.
0.0940(12) Ϫ1/4
0.030(2)
[4] J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, H.-J. Meyer, Z.
Anorg. Allg. Chem. 2007, 633, 1686 and literature cited therein.
[5] J. Glaser, H.-J. Meyer, Angew. Chem. 2008, 120, 7658; Angew.
Chem. Int. Ed. 2008, 47, 7547.
[6] K. Gibson, M. Ströbele, B. Blaschkowski, J. Glaser, M.
Weisser, R. Srinivasan, H.-J. Kolb, H.-J. Meyer, Z. Anorg. Allg.
Chem. 2003, 629, 1863.
Praseodymium atoms in the structure have the coordi-
nation number nine, resulting from four fluoride [dPrϪF
234.37(7)Ϫ256.3(2) pm] and five nitrogen atoms [dPrϪN
ϭ
ϭ
[7] J. Glaser, L. Unverfehrt, H. Bettentrup, G. Heymann, H. Hup-
pertz, T. Jüstel, H.-J. Meyer, Inorg. Chem. 2008, 47, 10455.
[8] C. Keller, H. Schumtz, J. Inorg. Nucl. Chem. 1965, 27, 900.
[9] A. Perret, Bl. Soc. Ind. Mulhouse 1933, 99, 10.
[10] WinXPow, Version 1.10: Diffractometer Software; Stoe & Cie
GmbH, Darmstadt, Germany, 2001.
[11] G. M. Sheldrick, SHELX-97: Program Package for Crystal
Structure Determination; University of Göttingen, Göttingen,
Germany, 1997.
[12] B. Blaschkowski, H. Jing, H.-J. Meyer, Angew. Chem. 2002,
114, 3468; Angew. Chem. Int. Ed. 2002, 41, 322.
[13] X. Xun, S. Feng, R. Xu, Mater. Res. Bull. 1998, 33, 369.
[14] R. E. Thoma, G. D. Brunton, R. A. Penneman, T. K. Keenan,
Inorg. Chem. 1970, 9, 1096.
254.9(2)Ϫ262.4(2) pm] of carbodiimide ions (Figure 5, left).
The lithium ions are localized between metal layers, in
which metal atoms from adjacent layers form a distorted
trigonal prismatic cage, bridged along the prism axes by
four [NϭCϭN] and one fluorine. Together with the fluorine
atoms from each [PrF2] layer, there are three short LiϪF
[dLiϪF ϭ 195.5(8)Ϫ199.5(8) pm] and two short LiϪN con-
tacts [dLiϪN ϭ 257.7(6) pm]. But there are more nitrogen
and even carbon neighbors from two nearly side-on
arranged [NϭCϭN] groups in the vicinity of lithium, as
shown in Figure 5.
[15] O. Reckeweg, A. Simon, Z. Naturforsch. 2003, 58b, 1097.
[16] J. D. Grice, V. Maisonneuve, M. Leblanc, Chem. Rev. 2007,
107, 114.
Acknowledgement
We gratefully acknowledge support of this research by the
Deutsche Forschungsgemeinschaft (Bonn) through the project
Nitridocarbonate.
[17] M. S. Wickleder, Z. Anorg. Allg. Chem. 1999, 625, 302.
Received: October 10, 2008
Published Online: January 13, 2009
Z. Anorg. Allg. Chem. 2009, 479Ϫ483
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
483