Enantioselective Catalysis by Hydrogen-Bonding Activation
5964 – 5970
76.3, 56.2, 34.8 ppm; EI-MS: m/z (%): 282 ([M]+, 11.93), 98 (100), 68
(54.94), 69 (31.96), 183 (12.03), 284 (11.78), 155 (7.91); HRMS (EI):
calcd. for C12H11BrO3: 281.9886; found: 281.9892; elemental analysis
calcd (%) for C12H11BrO3: C 50.91, H 3.92; found: C 50.76, H 3.84; IR
(KBr): n=3085, 2991, 2943, 2898, 1703, 1620, 1490, 1440, 1384, 1286,
0.71069 ). A total of 3870 reflections were measured and 1933 were
unique [I>2.50s(I)]. The structure was solved by direct methods
(SHELX-97)[17] and refined by full-matrix least-squares to R=0.063,
wR=0.072. Crystal data for 2 (C34H37O5N): orthorhombic, P212121, a=
10.277(4), b=29.928(6), c=9.616(3) , a=b=g=908, V=2957(1) 3,
1calcd =1.212 gcmÀ3, Z=4.
1230, 1177, 1072, 1029, 1010, 924, 842, 829 cmÀ1
.
X-ray crystallographic analysis of (R)-(+)-5e:[10] A single crystal of (+)-
5e was obtained by slow evaporation of its solution in dichloromethane/
hexane (1:2) at roomtemperature. X-ray crystallographic analysis was
performed with a Bruker SMART CCD-APEX at 208C using graphite
monochromated MoKa radiation (l=0.71073 ). A total of 6832 reflec-
tions were measured and 2517 were unique (Rint =0.0800). The structure
was solved by direct methods (SHELX-97)[17] and refined by full-matrix
least-squares to R=0.0455, wR=0.1016. Crystal data for (+)-5e
(C12H11BrO3): orthorhombic, P212121, a=7.0582(9), b=8.4182(11), c=
19.142(2) , a=b=g=908, V=1137.3(3) 3, 1calcd =1.653 gcmÀ3, Z=4.
The absolute configuration of (+)-5e was determined unambiguously by
the Bijvoet method to be R with a Flack parameter of À0.004(15) on the
basis of the anomalous dispersion of the bromine heavy atom.
(R)-4-Methoxy-6-(3-bromophenyl)-5,6-dihydropyran-2-one ((R)-5 f): This
product was obtained by using (S,S)-1b as the catalyst: a white solid pre-
pared in 67% yield and 89% ee (determined by HPLC on a Chiralpak
AD column using hexane/2-propanol (85:15), flow rate=1.0 mLminÀ1
,
t
R1 =14.0 min (major), t =
R2 =17.0 min (minor)); m.p. 88–908C; [a]D20
+162.2 (c=1.09 in CHCl3); 1H NMR (300 MHz, CDCl3): d=7.58 (s,
1H), 7.47 (d, J=8.4 Hz, 2H), 7.34–7.22 (m, 2H), 5.38 (dd, J=12.0,
0.9 Hz, 1H), 5.24 (s, 1H), 3.78 (s, 3H), 2.82–2.76 (m, 1H), 2.62–2.55 (m,
1H) ppm; 13C NMR (75 MHz, CDCl3): d=172.3, 166.4, 140.4, 131.6,
130.2, 129.0, 124.5, 122.7, 90.5, 76.2, 56.2, 34.9 ppm; EI-MS: m/z (%): 282
([M]+, 11.94), 98 (100), 68 (47.51), 69 (29.18), 40 (11.64), 284 (11.55), 183
(7.99), 155 (5.17); HRMS (EI): calcd for C12H12O3: 204.0781; found:
204.0787; elemental analysis calcd (%) for C12H11BrO3: C 50.91, H 3.92;
found: C 51.11, H 3.92; IR (KBr): n=3106, 3014, 2942, 1712, 1626, 1568,
1386, 1355, 1227, 1174, 1072, 1028, 994, 877, 834, 802, 690 cmÀ1
.
(R)-4-Methoxy-6-(2-bromophenyl)-5,6-dihydropyran-2-one
((R)-5 g):
This product was obtained by using (S,S)-1b as the catalyst: a white solid
prepared in 75% yield and 82% ee (determined by HPLC on a Chiral-
pak AD column with hexane/isopropanol (85:15), flow rate=
1.0 mLminÀ1, tR1 =11.0 min (major), tR2 =12.4 min (minor)); m.p. 142–
1448C; [a]2D0 =+210.4 (c=1.04 in CHCl3); 1H NMR (300 MHz, CDCl3):
d=7.68 (d, J=7.2 Hz, 1H), 7.58 (d, J=8.4 Hz, 1H), 7.42 (t, J=7.5 Hz,
1H), 7.29–7.24 (m, 1H), 7.57 (dd, J=12.3, 3.6 Hz, 1H), 5.29 (s, 1H), 3.82
(s, 3H), 2.87–2.80 (m, 1H), 2.66–2.57 (m, 1H) ppm; 13C NMR (75 MHz,
CDCl3): d=172.5, 166.7, 137.6, 132.8, 129.9, 127.7, 121.0, 90.4, 76.4, 56.2,
33.7 ppm; EI-MS: m/z (%): 282 ([M]+, 6.23), 98 (100), 68 (59.58), 69
(36.49), 40 (24.66), 159 (22.97), 115 (7.36), 183 (6.04); HRMS (EI): calcd.
for C12H11BrO3: 281.9886; found: 281.9885; IR (KBr): n=3078, 2979,
Acknowledgements
Financial support fromthe National Natural Science Foundation of
China, the Chinese Academy of Sciences, the Major Basic Research De-
velopment Program of China (Grant no. G2000077506), and the Ministry
of Science and Technology of the Commission of Shanghai Municipality
is gratefully acknowledged.
[1] For leading references see: a) U. Eder, G. Sauer, R. Wiechert,
Angew. Chem. 1971, 83, 492–493; Angew. Chem. Int. Ed. Engl.
1971, 10, 496–497; b) B. List, R. A. Lerner, C. F. Barbas III, J. Am.
Chem. Soc. 2000, 122, 2395–2396; c) K. A. Ahrendt, C. J. Borths,
D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243–4244; d) W.
Notz, B. List, J. Am. Chem. Soc. 2000, 122, 7386–7387.
[2] For comprehensive reviews on asymmetric organocatalysis, see, for
example: a) P. I. Dalko, L. Moisan, Angew. Chem. 2001, 113, 3840–
3864; Angew. Chem. Int. Ed. 2001, 40, 3726–3748; b) H. Groger, J.
Wilken, Angew. Chem. 2001, 113, 545–548; Angew. Chem. Int. Ed.
2001, 40, 529–532; c) B. List, Tetrahedron 2002, 58, 5573–5590;
d) E. R. Jarvo, S. J. Miller, Tetrahedron 2002, 58, 2481–2495; e) N.
Gathergood, Aust. J. Chem. 2002, 55, 615; f) R. O. Duthaler, Angew.
Chem. 2003, 115, 1005–1008; Angew. Chem. Int. Ed. 2003, 42, 975–
978; g) M. Movassaghi, E. N. Jacobsen, Science 2002, 298, 1904–
1905.
[3] a) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley-In-
terscience, New York, 1994; b) Catalytic Asymmetric Synthesis,
2nd ed. (Ed.: I. Ojima), Wiley-VCH, New York, 2000; c) H. B.
Kagan, Comprehensive Organic Chemistry, Vol. 8, Pergamon,
Oxford, 1992; d) Comprehensive Asymmetric Catalysis, Vol. I–III
(Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin,
1999; e) Lewis Acids in Organic Synthesis (Ed.: H. Yamamoto),
Wiley-VCH, New York, 2001.
[4] For a recent highlight, see: a) P. M. Pihlo, Angew. Chem. 2004, 116,
2110–2113; Angew. Chem. Int. Ed. 2004, 43, 2062–2064; b) R. Stew-
art, The Proton: Applications in Organic Chemistry, Academic
Press, Orlando, 1985; c) A. Wittkopp, P. R. Scheiner, Chem. Eur. J.
2003, 9, 407–414.
2947, 2854, 1712, 1620, 1386, 1233, 1184, 1073, 1022, 996, 850, 775 cmÀ1
.
4-Methoxy-6-(3-methoxyphenyl)-5,6-dihydropyran-2-one (5h): This prod-
uct was obtained by using (S,S)-1b as the catalyst: a white solid prepared
in 45% yield and 91% ee (determined by HPLC on a Chiralpak AD
column using hexane/2-propanol (85:15), flow rate=1.0 mLminÀ1, tR1
=
17.6 min (major), tR2 =20.7 min (minor)); m.p. 90–928C; [a]2D0 =+167.2
(c=1.0 in CHCl3); 1H NMR (300 MHz, CDCl3): d=7.31 (t, J=7.8 Hz,
1H), 6.99–6.97 (m, 1H), 6.91–6.88 (m, 1H), 5.41 (dd, J=12.3, 4.2 Hz,
1H), 5.26 (s, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 2.83–2.78 (m, 1H), 2.64–2.56
(m, 1H) ppm; 13C NMR (75 MHz, CDCl3): d=172.6, 166.8, 159.8, 139.8,
129.7, 118.1, 114.1, 111.4, 90.5, 76.9, 56.1, 55.3, 35.0 ppm; EI-MS: m/z
(%): 234 (M+, 63.44), 98 (100), 68 (86.24), 69 (50.88), 135 (35.81), 77
(31.80), 176 (7.93); HRMS (EI): calcd for C13H12O4: 234.0887; found:
2234.0883; IR (KBr): n=3096, 3013, 2945, 2838, 1702, 1625, 1585, 1490,
1458, 1448, 1388, 1289, 1244, 1227, 1202, 1032, 998, 786 cmÀ1
.
(S)-4-Methoxy-6-(2-phenylethyl)-5,6-dihydropyran-2-one ((S)-5i): This
product was obtained by using (S,S)-1b as the catalyst: a white solid pre-
pared in 50% yield and 69% ee (determined by HPLC on a Chiralcel
OB-H column using hexane/isopropanol (85:15), flow rate=
1.2 mLminÀ1, tR1 =42.5 min (R, minor), tR2 =56.1 min (S, major)). The ab-
solute configuration of 5i was determined to be S by comparison of its
chiroptical rotation with that reported in the literature.[14] [a]D20 =+18.5
1
(c=0.97 in CHCl3); m.p. 56–588C; H NMR (300 MHz, CDCl3): d=7.33–
7.27 (m, 2H), 7.23–7.19 (m, 3H), 5.15 (d, J=1.5 Hz, 1H), 4.40–4.34 (m,
1H), 3.74 (s, 1H), 2.90–2.79 (m, 2H), 2.58–2.48 (m, 1H), 2.34–2.29 (m,
1H), 2.18–2.10 (m, 1H), 1.92 (m, 1H) ppm; 13C NMR (75 MHz, CDCl3):
d=172.7, 167.3, 104.8, 128.5, 128.4, 126.1, 90.3, 74.7, 56.0, 36.3, 33.0,
30.9 ppm; EI-MS: m/z (%): 232 ([M]+, 30.04), 127 (100), 91 (70.87), 39
(55.20), 117 (43.82), 68 (37.02), 200 (23.23), 141 (20.00), 155 (16.30);
HRMS (EI): calcd. for C14H16O3: 232.1094; found: 232.1102; IR (KBr):
n=3087, 3063, 3028, 2943, 2857, 1708, 1625, 1605, 1497, 1456, 1444, 1396,
[5] For recent examples of hydrogen-bonding-promoted asymmetric
catalysis, see: a) T. Schuster, M. Bauch, G. Durner, M. W. Gobel,
Org. Lett. 2000, 2, 179–181; b) Y. Huang, A. K. Unni, A. N. Thada-
ni, V. H. Rawal, Nature, 2003, 424, 146; c) Z. Tang, F. Jiang, L.-T.
Yu, X. Cui, L.-Z Gong, A.-Q. Mi, Y.-Z. Zhang, Y. D. Wu, J. Am.
Chem. Soc. 2003, 125, 5262–5263; d) N. T. McDougal, S. E. Schaus,
J. Am. Chem. Soc. 2003, 125, 12094–12095; e) D. Uraguchi, M.
Terada, J. Am. Chem. Soc. 2004, 126, 5356–5357; f) T. Akiyama, J.
Itoh, K. Yokota, K. Fuchibe, Angew. Chem. 2004, 116, 1592–1594;
Angew. Chem. Int. Ed. 2004, 43, 1566–1568; g) M. S. Sigman, E. N.
Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901–4902; h) M. S. Sigman,
1374, 1295, 1396, 1374, 1249, 1224, 1039, 1000, 912, 824, 732, 701 cmÀ1
.
X-ray crystallographic analysis of 2:[10] A single crystal of 2 was obtained
by recrystallization of TADDOL in DMF/H2O (5:1). X-ray crystallo-
graphic analysis was performed at 208C by using a Rigaku AFC7R dif-
fractometer with graphite monochromated MoKa radiation (l=
Chem. Eur. J. 2004, 10, 5964 – 5970
ꢁ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5969