Milan, Buma, and de Lange: Spectroscopy of SHϩ
527
ACKNOWLEDGMENTS
creased dramatically. This sharp rise in ionization yield
might be attributed to two different scenarios. In the first one
rotational autoionization is very inefficient below the Nϩϭ5
threshold, making the direct ionization channel dominate the
ionization characteristics above Nϩϭ5. In that case we
would expect the electronic autoionization channel to show
an equivalent drop. What we observe in this channel, how-
ever, is that the intensity of the resonances decreases slightly
between the Nϩϭ2 and Nϩϭ5 thresholds, and gradually
dies away above the Nϩϭ5 threshold without the expected
sharp drop. In the second scenario, Rydberg states in the
present energy region may be subject to predissociation, a
decay channel which will become unimportant for energies
where direct ionization is possible. This would similarly lead
to a sharp rise in the ionization yield at Nϩϭ5, but without
an accompanying sharp drop in the electronic autoionization
channel.
The authors thank K. Wang and V. McKoy ͑California
Institute of Technology͒ for helpful discussions, and the ref-
eree for constructive comments. The financial support from
the Netherlands Organization of Scientific Research ͑NWO͒
is gratefully acknowledged.
1
¨
K. Muller-Dethlefs, M. Sander, and E. W. Schlag, Chem. Phys. Lett. 112,
291 ͑1984͒.
2
¨
K. Muller-Dethlefs and E. W. Schlag, Annu. Rev. Phys. Chem. 42, 109
͑1991͒, and references therein.
3 R. G. Tonkyn, R. T. Wiedmann, and M. G. White, J. Chem. Phys. 96, 3696
͑1992͒.
4 I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K.
¨
Muller-Dethlefs, and V. E. Bondybey, J. Chem. Phys. 98, 3592 ͑1993͒.
5 E. de Beer, W. J. Buma, and C. A. de Lange, J. Chem. Phys. 99, 3252
͑1993͒.
6 C. W. Hsu, D. P. Baldwin, C. L. Liao, and C. Y. Ng, J. Chem. Phys. 100,
8047 ͑1994͒.
7 G. P. Bryant, Y. Jiang, M. Martin, and E. R. Grant, J. Chem. Phys. 101,
7199 ͑1994͒.
An interesting observation, marked by the broken verti-
cal lines in Fig. 3, concerns the appearance of so-called
‘‘window resonances,’’38 which originate from the interfer-
ence between the resonant Rydberg states and the continua of
8 S. T. Pratt, J. Chem. Phys. 101, 8302 ͑1994͒.
9 N. P. L. Wales, W. J. Buma, C. A. de Lange, H. Lefebvre-Brion, K. Wang,
and V. McKoy ͑unpublished͒.
10 R. G. Tonkyn and M. G. White, J. Chem. Phys. 95, 5582 ͑1991͒.
11 W. Kong, D. Rodgers, and J. W. Hepburn, J. Chem. Phys. 99, 8571 ͑1993͒.
12 W. Kong, D. Rodgers, and J. W. Hepburn, Chem. Phys. Lett. 221, 301
͑1994͒.
3
1
the X ⌺Ϫ ground ionic state and the a ⌬ excited ionic
state. As is observed, these interferences lead to an increase
in the electrostatic autoionization channel and a decrease in
the direct ionization channel.
13 W. Kong and J. W. Hepburn, J. Phys. Chem. 99, 1637 ͑1995͒.
14 R. T. Wiedmann and M. G. White, J. Chem. Phys. 102, 5141 ͑1995͒.
15 A. Mank, T. Nguyen, J. D. D. Martin, and J. W. Hepburn, Phys. Rev. A 51,
1 ͑1995͒.
In the present study detailed information on the spectros-
1
copy of the excited a ⌬ ionic state of SHϩ ͑SDϩ͒ and on
16 D. A. Ramsay, J. Chem. Phys. 20, 1920 ͑1952͒.
17 B. A. Morrow, Can. J. Phys. 44, 2447 ͑1966͒.
the underlying dynamics of high-n Rydberg states could be
obtained. It is interesting to note that the combined insight
obtained from the present ZEKE-PFI study and our previous
REMPI-PES work allows for strategies to produce SHϩ and
SDϩ ions in specific, well-defined rovibronic levels associ-
18 M. Horani, S. Leach, and J. Rostas, J. Mol. Spectrosc. 23, 115 ͑1967͒.
19 S. J. Dunlavey, J. M. Dyke, N. K. Fayad, N. Jonathan, and A. Morris, Mol.
Phys. 38, 729 ͑1979͒; 44, 265 ͑1981͒.
20 J. Rostas, M. Horani, J. Brion, D. Daumont, and J. Malicet, Mol. Phys. 52,
1431 ͑1984͒.
1
ated with the a ⌬ excited ionic state. Such strategies are
21 E. P. Edwards, C. S. Maclean, and P. J. Sarre, Mol. Phys. 52, 1453 ͑1984͒.
22 M. N. R. Ashfold, B. Tutcher, and C. M. Western, Mol. Phys. 66, 981
͑1989͒.
clearly important in the context of state-selective chemistry.
23 S. H. Ashworth and J. M. Brown, J. Mol. Spectrosc. 153, 41 ͑1992͒.
24 G. P. Morley, I. R. Lambert, D. H. Mordaunt, S. H. S. Wilson, M. N. R.
Ashfold, R. N. Dixon, and C. M. Western, J. Chem. Soc. Faraday Trans.
89, 3865 ͑1993͒.
V. CONCLUSIONS
The application of ZEKE-PFI spectroscopy on the
25 J. B. Milan, W. J. Buma, C. A. de Lange, C. M. Western, and M. N. R.
Ashfold, Chem. Phys. Lett. 239, 326 ͑1995͒.
1
[a ⌬]3d 2⌽ ( Јϭ0) Rydberg state of the mercapto radi-
v
cal, excited by two-photon absorption from the ground state,
has enabled us to investigate with high resolution the spec-
26 J. B. Milan, W. J. Buma, C. A. de Lange, K. Wang, and V. McKoy, J.
Chem. Phys. 103, 3262 ͑1995͒.
1
troscopic properties of the a ⌬ excited ionic state of SHϩ
27 J. B. Milan, W. J. Buma, and C. A. de Lange ͑unpublished͒.
28 K. Wang, V. McKoy, J. B. Milan, W. J. Buma, and C. A. de Lange ͑un-
published͒.
and SDϩ. The ionization energy of this state has been deter-
mined with a considerably improved accuracy, while the
state selectivity and high energy resolution inherent in the
method have been exploited to obtain its rotational param-
eters. Apart from the spectroscopic parameters, these ZEKE-
PFI experiments in conjunction with experiments probing the
various possible ionization pathways have elucidated the in-
trinsic details of the dynamical properties of the high-n Ry-
dberg states involved in the ZEKE-PFI experiments. We find
that these Rydberg state are relatively insensitive to electro-
static and rotational autoionization processes. As a result, we
observe that the rotational branching ratios for the pulsed-
field ionization process show the same unusual characteris-
tics as the rotational branching ratios resulting from direct
ionization.
29 B. G. Koenders, D. M. Wieringa, K. E. Drabe, and C. A. de Lange, Chem.
Phys. 118, 113 ͑1987͒.
30 C. E. Moore, Atomic Energy Levels, Vol. 35 of Natl. Stand. Ref. Data Ser.,
Natl. Bur. Stand. ͑U.S. GPO, Washington, D.C., 1971͒.
31 W. C. Martin, R. Zulubas, and A. Musgrove, J. Phys. Chem. Ref. Data. 19,
820 ͑1990͒.
32 CRC Handbook of Chemistry and Physics, 67th Ed. ͑CRC Press, Boca
Raton, FL, 1986͒, and references therein.
R. Lindner, H. J. Dietrich, and K. Muller-Dethlefs, Chem. Phys. Lett. 228,
33
¨
417 ͑1994͒.
34 J. K. Park and H. Sun, Chem. Phys. Lett. 194, 485 ͑1992͒.
35 J. Xie and R. N. Zare, J. Chem. Phys. 93, 3033 ͑1990͒.
36 E. de Beer, C. A. de Lange, J. A. Stephens, K. Wang, and V. McKoy, J.
Chem. Phys. 95, 714 ͑1991͒.
37 E. de Beer, M. Born, C. A. de Lange, and N. P. C. Westwood, Chem. Phys.
Lett. 186, 40 ͑1991͒.
38 U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 ͑1968͒.
J. Chem. Phys., Vol. 104, No. 2, 8 January 1996
130.18.123.11 On: Sun, 21 Dec 2014 04:35:26