3898
N. Tas¸altın et al. / Journal of Alloys and Compounds 509 (2011) 3894–3898
Acknowledgements
This study was supported by The Scientific and Technologi-
cal Research Council of Turkey. The project title is “Investigation
and Development of Nanotechnologic Hydrogen Sensors” and the
project number is “106T546”.
References
[1] D.H. Cobden, Nature 409 (2001) 32–33.
[2] T. Goodson, O. Varnavski, Y. Wang, Int. Rev. Phys. Chem. 23 (2004) 109–150.
[3] P.V. Kamat, J. Phys. Chem. B 106 (2002) 7729–7744.
[4] S. Manalis, K. Babcock, J. Massie, V. Elings, M. Dugas, Appl. Phys. Lett. 66 (1995)
2585–2587.
[5] S.Y. Chou, M.S. Wei, P.R. Krauss, P.B. Fischer, J. Appl. Phys. 76 (1994) 6673–
6675.
[6] F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Science 293 (2001)
2227–2231.
[7] K.T. Kim, S.J. Sim, S.M. Cho, IEEE Sens. J. 6 (2006) 509–513.
[8] E. S¸ ennik, N. Kılınc¸ , Z.Z. Öztürk, J. Appl. Phys. 108 (2010) 054317.
[9] Y. Konishi, M. Motoyama, H. Matsushima, Y. Fukunaka, R. Ishii, Y. Ito, J. Elec-
troanal. Chem. 559 (2003) 149–153.
[10] I.Z. Rahman, K.M. Razeeb, M. Kamruzzaman, M. Serantoni, J. Mater. Process.
Technol. 153 (2004) 811–815.
[11] O. Rabin, P.R. Herz, Y.M. Lin, A.I. Akinwande, S.B. Cronin, M.S. Dresselhaus, Adv.
Funct. Mater. 13 (2003) 631–638.
Fig. 7. XRD spectrum from the surface of the Pd–Fe nanowire array, after annealing
at 500 ◦C.
[12] X.L. Fei, S.L. Tang, R.L. Wang, H.L. Su, Y. Du, Solid State Commun. 141 (2007)
25–28.
[13] C.M. Wayman, Scr. Metall. 5 (1971) 489.
[14] T. Sohmura, R. Oshima, F.E. Fujita, Scr. Metall. 14 (1980) 855–856.
[15] H. Uchida, Y. Matsumura, H. Uchida, H. Kaneko, J. Magn. Magn. Mater. 239
(2002) 540–545.
[16] K. Baba, U. Miyagawa, K. Watanabe, Y. Sakamoto, T.B. Flanagan, J. Mater. Sci. 25
(1990) 3910–3916.
nanowires. As shown in Fig. 6, the EDX spectrum from the sur-
face of the Pd–Fe nanowire array confirms the electrodeposition
process. The EDX spectra show signals from the Pd–Fe nanowires
approximately at 86% of the Pd and 14% of the Fe.
Moreover, Fig. 7 shows a XRD spectrum of the Pd–Fe nanowires,
after annealing at 500 ◦C. All of the peaks can be indexed to a (1 1 1),
(2 0 0) and (2 2 0) poly-crystalline Pd–Fe with an fcc structure, indi-
cating that Pd and Fe formed an alloy phase.
[17] R.C. Hughes, W.K. Schubert, J. Appl. Phys. 71 (1992) 542–544.
[18] Y.T. Cheng, Y. Li, D. Lisi, W.M. Wang, Sens. Actuator B: Chem. 30 (1996) 11–16.
[19] L. Huang, H. Gong, D.K. Peng, G.Y. Meng, Thin Solid Films 345 (1999) 217–221.
[20] P. Kumar, L.K. Malhotra, Mater. Chem. Phys. 88 (2004) 106–109.
[21] S. Nakano, S. Yamaura, S. Uchinashi, H. Kimura, A. Inoue, Sens. Actuator B: Chem.
104 (2005) 75–79.
[22] X.M.H. Huang, M. Manolidis, S.C. Jun, J. Hone, Appl. Phys. Lett. 86 (2005) 143104.
[23] N. Tas¸ altın, S. Öztürk, N. Kılınc¸ , Z.Z. Öztürk, Appl. Phys. A 97 (2009) 745–750.
[24] H.N. Hu, J.L. Chen, G.H. Wu, L.J. Chen, H.Y. Liu, Y.X. Li, J.P. Qu, Acta Phys. Sin. 54
(2005) 4370–4373.
[25] H.N. Hu, C.H. Yang, J.L. Chen, G.H. Wu, J. Magn. Magn. Mater. 320 (2008)
2305–2309.
[26] V.M. Prida, V. Vega, V. Franco, J.L.S. Llamazares, M.J. Perez, J.D. Santos, L. Escoda,
J.J. Sunol, B. Hernando, J. Magn. Magn. Mater. 321 (2009) 790–792.
[27] N. Tas¸ altın, S. Öztürk, N. Kılınc¸ , H. Yüzer, Z.Z. Öztürk, Appl. Phys. A 95 (2009)
781–787.
[28] N. Tas¸ altın, S. Öztürk, H. Yüzer, Z.Z. Öztürk, J. Optoelectron. Biomed. Mater. 1
(2009) 79–84.
[29] H. Martin, P. Carro, A.H. Creus, S. Gonzalez, R.C. Salvarezza, A.J. Arvia, Langmuir
13 (1997) 100–110.
[30] J.V. Zoval, R.M. Stiger, P.R. Biernacki, R.M. Penner, J. Phys. Chem. 100 (1996)
837–844.
[31] B. Scharifker, G. Hills, Electrochim. Acta 28 (1983) 879–889.
[32] D. Bera, S.C. Kuiry, S. Seal, J. Phys. Chem. B 108 (2004) 556–562.
[33] Y. Gimeno, A.H. Creus, P. Carro, S. Gonzalez, R.C. Salvarezza, A.J. Arvia, J. Phys.
Chem. B 106 (2002) 4232–4344.
4. Conclusions
A highly ordered Pd–Fe nanowire array that has a high surface
area was fabricated at room temperature by AAO template-assisted
electrodeposition. The morphology, structure and growth mecha-
nisms of these Pd–Fe nanowires were reported in detail. The initial
stages of the electrodeposition of the Pd–Fe nanowires on Au were
studied using potentiostat. The nucleation rate and the number
of atoms in the critical nucleus are determined from the analysis
of current transients. Discussions of the underlying principle that
affects the properties of Pd–Fe in the present work can be help-
ful for further understanding the other alloy-structured nanowires.
We believe that understanding the nucleation and growth mecha-
nisms of the Pd–Fe nanowires gives rise to potential applications,
especially in the field of sensors.