342
N. Zhao et al. / Journal of Alloys and Compounds 463 (2008) 338–342
Department (No. 2006125) and Hebei Normal University, PR
China.
Appendix A. Supplementary data
Supplementary data associated with this article can be found,
References
[1] C. Galaup, C. Picard, B. Cathala, L. Cazaux, P. Tisne`s, Helv. Chim. Acta
82 (1999) 543.
[2] J.-C.G. Bu¨nzli, C. Piguet, Chem. Soc. Rev. 34 (2005) 1048.
[3] D.A. Bardwell, J.C. Jeffery, P.L. Jones, J.A. McCleverty, E. Psillakis, Z.
Reeves, M.D. Ward, J. Chem. Soc., Dalton Trans. (1997) 2079.
[4] P.L. Jones, A.J. Amoroso, J.C. Jeffery, J.A. McCleverty, E. Psillakis,
L.H. Ree, M.D. Ward, Inorg. Chem. 36 (1997) 10.
[5] E.J. Nassar, P.S. Calefi, I.L.V. Rosa, O.A. Serra, J. Alloys Compd. 275
(1998) 838.
[6] J.C.G. Bu¨nzli, F. Ihringer, Inorg. Chim. Acta 246 (1996) 195.
[7] P.K. Sharma, A.R. van Doorn, A.G.J. Staring, J. Lumin. 62 (1994)
219.
[8] J.B. Lamture, Z.H. Zhou, A.S. Kumar, T.G. Wensel, Inorg. Chem. 34 (1995)
864.
[9] Y.B. Wang, X.J. Zheng, W.J. Zhuang, L.P. Jin, Eur. J. Inorg. Chem. (2003)
3572.
[10] A.W.H. Lam, W.T. Wong, S. Gao, G.H. Wen, X.X. Zhang, Eur. J. Inorg.
Chem. 149 (2003).
[11] Y.B. Wang, X.J. Zheng, W.J. Zhuang, L.P. Jin, Eur. J. Inorg. Chem. (2003)
1355.
[12] X. Li, Z.Y. Zhang, Y.Q. Zou, Eur. J. Inorg. Chem. (2005) 2909.
[13] L.J. Yuan, M.C. Yin, E.T. Yuan, J.T. Sun, K.L. Zhang, Inorg. Chim. Acta
357 (2004) 89.
[14] I. Hemmila´, V.-M. Mukkala, Crit. Rev. Clin. Lab. Sci. 38 (2001)
441.
[15] S. Pandya, J.H. Yu, D. Parker, Dalton Trans. (2006) 2757.
[16] J. Kido, Chem. Rev. 102 (2002) 2357.
[17] M. Sun, H. Xin, K.Z. Wang, Y.A. Zhang, L.P. Jin, C.H. Huang, Chem.
Commun. (2003) 702.
[18] H. Xin, F.Y. Li, M. Shi, Z.Q. Bian, C.H. Huang, J. Am. Chem. Soc. 125
(2003) 7166.
[19] N. Andre´, T.B. Jensen, R. Scopelliti, D. Imbert, M. Elhabiri, G. Hopfgartner,
C. Piguet, J.C.G. Bu1nzli, Inorg. Chem. 43 (2004) 515.
[20] S. Quici, M. Cavazzini, G. Marzanni, G. Accorsi, N. Armaroli, B. Ventura,
F. Barigelletti, Inorg. Chem. 44 (2005) 529.
Fig. 5. Thermogravimetric curves (DTG and TG) for complex [Eu(o-
MOBA)3phen]2·2H2O (1).
on the Eu–O bond distances. The Eu–O (terminal chelating
carboxylate) bonds are longer than the Eu–O (bridging carboxy-
late) bonds, so two terminal o-methoxybenzoates are removed
firstly. The last stage degradation temperature is in the range of
490–693 ◦C, in which the remained four MOBA are removed
while the complex was completely degraded into Eu2O3 with a
total loss of 76.42 wt% (theoretical loss is 78.10%). The ther-
mal decomposition of [Eu(o-MOBA)3phen]2·2H2O (1) can be
described as follows:
[Eu(o-MOBA)3phen]2·2H2O → [Eu(o-MOBA)3phen]2
→ Eu2(o-MOBA)6 → Eu2(o-MOBA)4 → Eu2O3
The decomposition process of [Tb(o-MOBA)3phen]2•2H2O (2)
is similar to 1 (Fig. S3.), with four decomposition stages of tem-
perature 25–85 ◦C, 245–381 ◦C, 381–543 ◦C and 543–886 ◦C,
respectively. Its thermal decomposition can be described as fol-
lows:
[Tb(o-MOBA)3phen]2·2H2O → [Tb(o-MOBA)3phen]2
→ Tb2(o-MOBA)6 → Tb2(o-MOBA)4 → (1/2)Tb4O7
[21] Z.H. Zhang, T.A. Okamura, Y. Hasegawa, H. Kawaguchi, L.Y. Kong, W.Y.
Sun, N. Ueyama, Inorg. Chem. 44 (2005) 6219.
4. Conclusions
[22] W.S. Liu, T.Q. Jiao, Y.Z. Li, Q.Z. Liu, M.Y. Tan, H. Wang, L.F. Wang,
J. Am. Chem. Soc. 126 (2004) 2280.
[23] X.D. Guo, G.S. Zhu, Q.R. Fang, M. Xue, G. Tian, J.Y. Sun, X.T. Li, S.L.
Qiu, Inorg. Chem. 44 (2005) 3850.
[24] A.D. Bettencourt-Dias, Inorg. Chem. 44 (2005) 2734.
[25] P.C.R. Soares-Santos, H.I.S. Nogueira, F.A. Almeida Paz, R.A. Sa´ Fer-
reira, L.D. Carlos, J. Klinowski, T. Trindade, Eur. J. Inorg. Chem. (2003)
3609.
[26] R.F. Wang, S.P. Wang, J.J. Zhang, J. Mol. Struct. 648 (2003) 151.
[27] G.M. Sheldrick, SHELXS-97: Program for the Solution of Crystal Struc-
tures, University of Go¨ttingen, Germany, 1997.
[28] G.M. Sheldrick, SHELXL-97: Program for the Refinement of Crystal
Structures, University of Go¨ttingen, Germany, 1997.
[29] Y. Zhang, L.P. Jin, S.Z. Lu, J. Chinese Rare Earth Soc. 16 (1998) 5.
[30] R.F. Wang, S.P. Wang, S.K. Shi, J.J. Zhang, Chinese J. Struct. Chem. 23
(2004) 1300.
Two dimeric rare-earth complexes [Eu(o-MOBA)3phen]
2·2H2O (1), [Tb(o-MOBA)3 phen]2·2H2O (2) have been synthe-
sized. Complex 1 shows bright red luminescence, 2 shows green
luminescence under UV light at room temperature, respectively.
The thermal analysis indicates that they are all quite stable to
heat.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No.20773034), Natural Science Founda-
tion of Hebei Province (No. B2007000237), Hebei Education