Page 5 of 6
Journal of the American Chemical Society
and enantiomeric excess of dalesconols in Daldinia eschscholzii.
Nat. Commun. 2012, 3, 1039.
wheat pathogen Parastagonospora nodorum via pathway activation.
Environ. Microbiol. 2017, 19 (5), 1975-1986.
1
2
3
4
5
6
7
8
9
(8).
Davin, L. B.; Wang, H.-B.; Crowell, A. L.; Bedgar, D. L.;
(25). Fiorentini, F.; Romero, E.; Fraaije, M. W.; Faber, K.; Hall, M.;
Mattevi, A., Baeyer-Villiger Monooxygenase FMO5 as Entry Point in
Drug Metabolism. ACS Chem. Biol. 2017, 12 (9), 2379-2387.
(26). van Beek, H. L.; Romero, E.; Fraaije, M. W., Engineering
cyclohexanone monooxygenase for the production of methyl
propanoate. ACS Chem. Biol. 2016, 12 (1), 291-299.
(27). Chiang, Y. M.; Ahuja, M.; Oakley, C. E.; Entwistle, R.;
Asokan, A.; Zutz, C.; Wang, C. C.; Oakley, B. R., Development of
genetic dereplication strains in Aspergillus nidulans results in the
discovery of aspercryptin. Angew. Chem., Int. Ed. 2016, 55 (5), 1662-
1665.
Martin, D. M.; Sarkanen, S.; Lewis, N. G., Stereoselective bimolecular
phenoxy radical coupling by an auxiliary (dirigent) protein without
an active center. Science 1997, 275 (5298), 362-367.
(
9).
Liu, J.; Stipanovic, R. D.; Bell, A. A.; Puckhaber, L. S.; Magill,
C. W., Stereoselective coupling of hemigossypol to form (+)-
gossypol in moco cotton is mediated by a dirigent protein.
Phytochemistry 2008, 69 (18), 3038-3042.
(10). Pickel, B.; Schaller, A., Dirigent proteins: molecular
characteristics and potential biotechnological applications. Appl.
Microbiol. Biotechnol. 2013, 97 (19), 8427-8438.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
11). Hu, J.; Sarrami, F.; Li, H.; Zhang, G.; Stubbs, K. A.; Lacey, E.;
(28). Tolmie, C.; Smit, M. S.; Opperman, D. J., Native roles of
Baeyer–Villiger monooxygenases in the microbial metabolism of
natural compounds. Nat. Prod. Rep. 2019, 36, 326-353.
(29). Wang, G.-Q.; Chen, G.-D.; Qin, S.-Y.; Hu, D.; Awakawa, T.;
Li, S.-Y.; Lv, J.-M.; Wang, C.-X.; Yao, X.-S.; Abe, I.; Gao, H.,
Biosynthetic pathway for furanosteroid demethoxyviridin and
identification of an unusual pregnane side-chain cleavage. Nat.
Commun. 2018, 9 (1), 1838.
(30). Cygler, M.; Grochulski, P.; Kazlauskas, R. J.; Schrag, J. D.;
Bouthillier, F.; Rubin, B.; Serreqi, A. N.; Gupta, A. K., A structural basis
for the chiral preferences of lipases. J. Am. Chem. Soc. 1994, 116 (8),
3180-3186.
(31). Li, G.; Garcia-Borràs, M.; Fürst, M. J.; Ilie, A.; Fraaije, M. W.;
Houk, K. N.; Reetz, M. T., Overriding Traditional Electronic Effects in
Biocatalytic Baeyer–Villiger Reactions by Directed Evolution. J. Am.
Chem. Soc. 2018, 140 (33), 10464-10472.
(32). Hu, Y.; Dietrich, D.; Xu, W.; Patel, A.; Thuss, J. A.; Wang, J.;
Yin, W.-B.; Qiao, K.; Houk, K. N.; Vederas, J. C., A carbonate-forming
Baeyer-Villiger monooxygenase. Nat. Chem. Biol. 2014, 10 (7), 552.
(33). Fürtges, L.; Obermaier, S.; Thiele, W.; Foegen, S.; Müller,
M., Diversity in Fungal Intermolecular Phenol Coupling of
Polyketides —Regioselective Laccase-based systems. ChemBioChem
2019. DOI: 10.1002/cbic.201900041
(34). Gasper, R.; Effenberger, I.; Kolesinski, P.; Terlecka, B.;
Hofmann, E.; Schaller, A., Dirigent protein mode of action revealed
by the crystal structure of AtDIR6. Plant Physiol. 2016, pp.
01281.2016.
(35). Kim, K.-W.; Smith, C. A.; Daily, M. D.; Cort, J. R.; Davin, L. B.;
Lewis, N. G., Trimeric structure of (+)-pinoresinol-forming dirigent
protein at 1.95 Å resolution with three isolated active sites. J. Biol.
Chem. 2015, 290 (3), 1308-1318.
(36). Sato, M.; Yagishita, F.; Mino, T.; Uchiyama, N.; Patel, A.;
Chooi, Y. H.; Goda, Y.; Xu, W.; Noguchi, H.; Yamamoto, T.,
Involvement of Lipocalin-like CghA in Decalin-Forming
Stereoselective Intramolecular [4+ 2] Cycloaddition. ChemBioChem
2015, 16 (16), 2294-2298.
(37). Kato, N.; Nogawa, T.; Takita, R.; Kinugasa, K.; Kanai, M.;
Uchiyama, M.; Osada, H.; Takahashi, S., Control of the
Stereochemical Course of [4+ 2] Cycloaddition during trans-Decalin
Formation by Fsa2-Family Enzymes. Angew. Chem. 2018, 130 (31),
9902-9906.
Stewart, S. G.; Karton, A.; Piggott, A. M.; Chooi, Y.-H., Heterologous
biosynthesis of elsinochrome A sheds light on the formation of the
photosensitive perylenequinone system. Chem. Sci. 2019, 10, 1457-
1
465.
(12). Lillehoj, E.; Milburn, M., Viriditoxin production by
Aspergillus viridi-nutans and related species. Appl. Microbiol. 1973,
26 (2), 202-205.
(
13). Suzuki, K.; Nozawa, K.; Nakajima, S.; Kawai, K., Structure
revision of mycotoxin, viriditoxin, and its derivatives. Chem. Pharm.
Bull. 1990, 38 (11), 3180-3181.
(
14). Mizuba, S.; Hsu, C.; Jiu, J., A third metabolite from Spicaria
divaricata NRRL 5771. J. Antibiot. 1977, 30 (8), 670-672.
15). Jiu, J.; MIZUBA, S., Metabolic products from Spicaria
(
divaricata NRRL 5771. J. Antibiot. 1974, 27 (10), 760-765.
(16). Ayer, W. A.; Craw, P. A.; Nozawa, K., Two 1 H-naphtho [2,
3
-c] pyran-1-one metabolites from the fungus Paecilomyces variotii.
Can. J. Chem. 1991, 69 (2), 189-191.
17). Wang, J.; Galgoci, A.; Kodali, S.; Herath, K. B.; Jayasuriya,
(
H.; Dorso, K.; Vicente, F.; González, A.; Cully, D.; Bramhill, D.,
Discovery of a small molecule that inhibits cell division by blocking
FtsZ, a novel therapeutic target of antibiotics. J. Biol. Chem. 2003,
78 (45), 44424-44428.
(18). Liu, Y.; Kurtán, T.; Wang, C. Y.; Lin, W. H.; Orfali, R.; Müller,
W. E.; Daletos, G.; Proksch, P., Cladosporinone, a new viriditoxin
derivative from the hypersaline lake derived fungus Cladosporium
cladosporioides. J. Antibiot. 2016, 69 (9), 702.
2
(
19). Kundu, S.; Kim, T. H.; Yoon, J. H.; Shin, H.-S.; Lee, J.; Jung, J.
H.; Kim, H. S., Viriditoxin regulates apoptosis and autophagy via
mitotic catastrophe and microtubule formation in human prostate
cancer cells. Int. J. Oncol. 2014, 45 (6), 2331-2340.
(
20). Anderson, D. E.; Kim, M. B.; Moore, J. T.; O’Brien, T. E.;
Sorto, N. A.; Grove, C. I.; Lackner, L. L.; Ames, J. B.; Shaw, J. T.,
Comparison of small molecule inhibitors of the bacterial cell
division protein FtsZ and identification of a reliable cross-species
inhibitor. ACS Chem. Biol. 2012, 7 (11), 1918-1928.
(
21). Park, Y. S.; Grove, C. I.; González-López, M.; Urgaonkar, S.;
Fettinger, J. C.; Shaw, J. T., Synthesis of (−)-Viriditoxin: A 6, 6′ -
Binaphthopyran-2-one that Targets the Bacterial Cell Division
Protein FtsZ. Angew. Chem., Int. Ed. 2011, 50 (16), 3730-3733.
(
22). Tan, N. P.; Donner, C. D., Total synthesis and confirmation
of the absolute stereochemistry of semiviriditoxin,
naphthopyranone metabolite from the fungus Paecilomyces variotii.
Tetrahedron 2009, 65 (20), 4007-4012.
a
(38). Jamieson, C. S.; Ohashi, M.; Liu, F.; Tang, Y.; Houk, K., The
expanding world of biosynthetic pericyclases: cooperation of
experiment and theory for discovery. Nat. Prod. Rep. 2019. DOI:
10.1039/C8NP00075A
(39). Tan, D.; Jamieson, C. S.; Ohashi, M.; Tang, M.-C.; Houk, K.
N.; Tang, Y., Genome-mined Diels-Alderase catalyzes formation of
the cis-octahydrodecalins of varicidin A and B. J. Am. Chem. Soc.
2019, 141 (2), 769-773.
(
23). Urquhart, A.; Mondo, S.; Mäkelä, M.; Hane, J.; Wiebenga,
A.; He, G.; Mihaltcheva, S.; Pangilinan, J.; Lipzen, A.; Barry, K.,
Genomic and genetic insights into cosmopolitan fungus,
Paecilomyces variotii (Eurotiales). Front. Microbiol. 2018, 9, 3058.
24). Chooi, Y. H.; Zhang, G.; Hu, J.; Muria-Gonzalez, M. J.; Tran,
a
(
P. N.; Pettitt, A.; Maier, A. G.; Barrow, R. A.; Solomon, P. S., Functional
genomics-guided discovery of a light-activated phytotoxin in the
(40). Li, L.; Yu, P.; Tang, M.-C.; Zou, Y.; Gao, S.-S.; Hung, Y.-S.;
Zhao, M.; Watanabe, K.; Houk, K.; Tang, Y., Biochemical
ACS Paragon Plus Environment