Pleas De ad l too nn oT tr aa nd sj au cs t ti omn sa rgins
Page 6 of 8
ARTICLE
Journal Name
affinity for CO
2
by the incorporation of amide groups into the 10.
Coordination Chemistry Reviews, 2D0O11I:,1205.150,3194/C680D-1T4072597.6B
H. Xu, B. Zhai, C. S. Cao and B. Zhao, Inorg Chem, 2016, 55,
structure and binding to multiple Lewis acid sites, which may
explain the high catalytic activity of the catalyst. The higher
catalytic activity of the catalyst 1 and TBAB system results from
the synergistic effect of combining the Zn ions with the Lewis
11.
12.
13.
14.
15.
16.
17.
18.
19.
9671-9676.
D. Zhao, X.-H. Liu, C. Zhu, Y.-S. Kang, P. Wang, Z. Shi, Y. Lu
and W.-Y. Sun, Chemcatchem, 2017, 9, 4598-4606.
D. Zhao, X. H. Liu, J. H. Guo, H. J. Xu, Y. Zhao, Y. Lu and W.
Y. Sun, Inorg Chem, 2018, 57, 2695-2704.
4
9
acidic Dy(III) sites
.
M. Aresta, A. Dibenedetto and A. Angelini, Chem Rev, 2014,
Conclusions
114, 1709-1742.
C. Maeda, Y. Miyazaki and T. Ema, Catalysis Science &
Technology, 2014, 4, 1482-1497.
Q. Liu, L. Wu, R. Jackstell and M. Beller, Nat Commun, 2015,
In this study, we successfully synthesised two novel 3d/4d-
f 1D double-strand coordination polymer catalysts with unique
structures for CO fixation. The X-ray single crystal structure
2
analysis revealed that the two compounds are isomorphous and
have a 1D metal-organic network coordination polymer. The
topological analysis of the underlying 1D chains allowed us to
establish that all metal atoms of each chain are exposed to the
outside and become potential catalytically active sites. Both
compounds also showed significant thermal stability and their
4
6
, 5933-6933.
J. Sun, S.-i. Fujita, F. Zhao and M. Arai, Green Chemistry,
004, 6, 613-616.
2
T. Ema, Y. Miyazaki, T. Taniguchi and J. Takada, Green
Chemistry, 2013, 15, 2485-2492.
C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adan,
E. Martin and A. W. Kleij, J Am Chem Soc, 2013, 135, 1228-
1231.
M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. van
Leeuwen, Chem Soc Rev, 2014, 43, 1734-1787.
C. J. Brown, F. D. Toste, R. G. Bergman and K. N. Raymond,
Chem Rev, 2015, 115, 3012-3035.
J. N. Rebilly, B. Colasson, O. Bistri, D. Over and O. Reinaud,
Chem Soc Rev, 2015, 44, 467-489.
network remained stable up to 325
showed high catalytic activity (> 95%) and CO
℃
. Importantly, catalyst 1
conversion 20.
2
selectivity (> 99%) to obtain cyclic carbonates with a wide
substrate scopes under suitable conditions. The cycloaddition
reaction between CO and a styrene oxide resulted in TOF up to
2
8,400 h . In addition, the application of the current types of
d-4f catalysts in catalysis are highlighted and particularly,
2
involve the conversion of fixed CO .
21.
22.
23.
24.
-
1
2
3
I. Nath, J. Chakraborty and F. Verpoort, Chem Soc Rev,
2
016, 45, 4127-4170.
R. M. Haak, S. J. Wezenberg and A. W. Kleij, Chem Commun
Camb), 2010, 46, 2713-2723.
(
Conflicts of interest
There are no conflicts to declare.
2
2
5.
6.
J. Park and S. Hong, Chem Soc Rev, 2012, 41, 6931-6943.
S. Matsunaga and M. Shibasaki, Chem Commun (Camb),
2
014, 50, 1044-1057.
2
7.
8.
C. Piguet, M. Borkovec, J. Hamacek and K. Zeckert,
Coordination Chemistry Reviews, 2005, 249, 705-726.
D. E. Barry, D. F. Caffrey and T. Gunnlaugsson, Chem Soc
Rev, 2016, 45, 3244-3274.
Acknowledgements
2
This work was supported by the National Natural Science
Foundation of China (NSFC, Grant 21431002).
29.
D. Zhao, X. H. Liu, Z. Z. Shi, C. D. Zhu, Y. Zhao, P. Wang and
W. Y. Sun, Dalton Trans, 2016, 45, 14184-14190.
K. Cheng, Q. Z. Zheng, Y. Qian, L. Shi, J. Zhao and H. L. Zhu,
Bioorg Med Chem, 2009, 17, 7861-7871.
30.
31.
32.
Notes and references
G. M. Sheldrick, Acta Crystallogr C Struct Chem, 2015, 71,
1.
J. Zhu, T. Diao, W. Wang, X. Xu, X. Sun, S. A. C. Carabineiro
and Z. Zhao, Applied Catalysis B: Environmental, 2017, 219,
3-8.
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard
and H. Puschmann, Journal of Applied Crystallography,
92-100.
2.
3.
4.
5.
6.
7.
Z. Zhao, J. Qin, C. Zhang, Y. Wang, D. Yuan and Y. Yao, Inorg
Chem, 2017, 56, 4569-4576.
J. Ai, X. Min, C. Y. Gao, H. R. Tian, S. Dang and Z. M. Sun,
Dalton Trans, 2017, 46, 6756-6761.
A. Decortes, A. M. Castilla and A. W. Kleij, Angew Chem Int
Ed Engl, 2010, 49, 9822-9837.
C. Y. Gao, H. R. Tian, J. Ai, L. J. Li, S. Dang, Y. Q. Lan and Z.
M. Sun, Chem Commun (Camb), 2016, 52, 11147-11150.
W.-Z. Qiao, H. Xu, P. Cheng and B. Zhao, Crystal Growth &
Design, 2017, 17, 3128-3133.
2
009, 42, 339-341.
A. L. S. P.vander Sluis, Acta Crystallogr. A, 1990, 46, 194-
01.
33.
34.
35.
36.
2
H. Xie, S. Li and S. Zhang, Journal of Molecular Catalysis A:
Chemical, 2006, 250, 30-34.
R. Ma, L.-N. He and Y.-B. Zhou, Green Chemistry, 2016, 18,
226-231.
R. M. Haak, A. Decortes, E. C. Escudero-Adan, M. Martinez
Belmonte, E. Martin, J. Benet-Buchholz and A. W. Kleij,
Inorg Chem, 2011, 50, 7934-7936.
N. Wei, Y. Zhang, L. Liu, Z.-B. Han and D.-Q. Yuan, Applied
Catalysis B: Environmental, 2017, 219, 603-610.
L. Wang, C. Xu, Q.-X. Han, X.-L. Tang, P. Zhou, R. Zhang, G.
Gao, B. Xu, W. Qin and W.-S. Liu, Chemical
Communications, 2018, 54, 2212-2215.
a. W. W. Tao Wang, a Yuan Lyu,*a Xingkun Chen,ac Cunyao
Li,ac Yan Zhang,ac Xiangen Songa and Yunjie Ding*ab, RSC
Adv., 2017, 7, 2836-2841.
3
7.
8.
3
8
.
.
H. Yasuda, L.-N. He and T. Sakakura, Journal of Catalysis,
2
002, 209, 547-550.
M. Ramin, J. Grunwaldt and A. Baiker, Journal of Catalysis,
005, 234, 256-267.
9
2
6
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins