Paper
Organic & Biomolecular Chemistry
minimization procedures, the spectroscopic empirical energy 13 B. Gerland, A. Goudot, C. Ligeour, G. Pourceau, A. Meyer,
function SPASIBA and the corresponding parameters are
used.45–47 A typical lowest energy structure for the complex
LecA–G2b is shown in Fig. S3.†
S. Vidal, T. Gehin, O. Vidal, E. Souteyrand, J. J. Vasseur,
Y. Chevolot and F. Morvan, Bioconjugate Chem., 2014, 25,
379–392.
In the same way, an empirical potential energy of inter- 14 B. Gerland, A. Goudot, G. Pourceau, A. Meyer, S. Vidal,
action ΔE for the lectin–ligand complexes using the simple
expression:
E. Souteyrand, J.-J. Vasseur, Y. Chevolot and F. Morvan,
J. Org. Chem., 2012, 77, 7620–7626.
15 G. Pourceau, A. Meyer, J. J. Vasseur and F. Morvan, J. Org.
Chem., 2009, 74, 6837–6842.
ΔEinteraction ¼ Ecomplex ꢀ Eprotein ꢀ Eligand
16 J. Lietard, A. Meyer, J. J. Vasseur and F. Morvan, J. Org.
Chem., 2008, 73, 191–200.
was evaluated using the same force field.
17 C. Ligeour, A. Meyer, J. J. Vasseur and F. Morvan,
Eur. J. Org. Chem., 2012, 1851–1856.
18 S. Cecioni, J. P. Praly, S. E. Matthews, M. Wimmerova,
A. Imberty and S. Vidal, Chem. – Eur. J., 2012, 18, 6250–
6263.
19 F. Morvan, A. Meyer, A. Jochum, C. Sabin, Y. Chevolot,
A. Imberty, J. P. Praly, J. J. Vasseur, E. Souteyrand and
S. Vidal, Bioconjugate Chem., 2007, 18, 1637–1643.
20 M. Nakane, S. Ichikawa and A. Matsuda, J. Org. Chem.,
2008, 73, 1842–1851.
Acknowledgements
This work was financially supported by ANR-12-BSV5-0020
“GLYCOMIME”. Plateforme NanoLyon is acknowledged for its
technical support. C. L and A. A. thank the University of
Montpellier for a research studentship. F.M. is a member of
Inserm.
21 B. R. Baker, in The Ciba Foundation Symposium on the
Chemistry and Biology of the Purine, ed. G. E. W. Wolsten-
holme and C. M. O’Connor, John Wiley & Sons, Chichester,
UK, 1957, pp. 120–133.
References
1 N. Gilboa-Garber, Methods Enzymol., 1982, 83, 378–385.
2 A. Imberty, M. Wimmerova, E. P. Mitchell and N. Gilboa- 22 J. J. Reina, O. S. Maldonado, G. Tabarani, F. Fieschi and
Garber, Microbes Infect., 2004, 6, 221–228. J. Rojo, Bioconjugate Chem., 2007, 18, 963–969.
3 D. Sicard, S. Cecioni, M. Iazykov, Y. Chevolot, 23 L. Chaveriat, I. Stasik, G. Demailly and D. Beaupere, Tetra-
S. E. Matthews, J. P. Praly, E. Souteyrand, A. Imberty, hedron: Asymmetry, 2006, 17, 1349–1354.
S. Vidal and M. Phaner-Goutorbe, Chem. Commun., 2011, 24 Since the catalytic form of copper is Cu(I), Cu(0) was used
47, 9483–9485.
as a nanopowder to ensure a large specific surface area
allowing its oxidation by oxygen contained in solvents.
4 S. Cecioni, R. Lalor, B. Blanchard, J. P. Praly, A. Imberty,
S. E. Matthews and S. Vidal, Chem. – Eur. J., 2009, 15, 25 A. Goudot, G. Pourceau, A. Meyer, T. Gehin, S. Vidal,
13232–13240.
J. J. Vasseur, F. Morvan, E. Souteyrand and Y. Chevolot,
Biosens. Bioelectron., 2013, 40, 153–160.
5 S. Cecioni, A. Imberty and S. Vidal, Chem. Rev., 2015, 115,
525–561.
6 K. Buffet, E. Gillon, M. Holler, J. F. Nierengarten,
A. Imberty and S. P. Vincent, Org. Biomol. Chem., 2015, 13,
6482–6492.
26 Y. Chevolot, C. Bouillon, S. Vidal, F. Morvan, A. Meyer,
J. P. Cloarec, A. Jochum, J. P. Praly, J. J. Vasseur and
E. Souteyrand, Angew. Chem., Int. Ed., 2007, 46, 2398–2402.
27 R. Wacker and C. M. Niemeyer, ChemBioChem, 2004, 5,
453–459.
7 A. Audfray, J. Claudinon, S. Abounit, N. Ruvoen-Clouet,
G. Larson, D. F. Smith, M. Wimmerova, J. Le Pendu, 28 J. Zhang, G. Pourceau, A. Meyer, S. Vidal, J.-P. Praly,
W. Romer, A. Varrot and A. Imberty, J. Biol. Chem., 2012,
287, 4335–4347.
E. Souteyrand, J.-J. Vasseur, F. Morvan and Y. Chevolot,
Biosens. Bioelectron., 2009, 24, 2515–2521.
8 C. Ligeour, A. Audfray, E. Gillon, A. Meyer, N. Galanos, 29 J. Zhang, G. Pourceau, A. Meyer, S. Vidal, J. P. Praly,
S. Vidal, J. J. Vasseur, A. Imberty and F. Morvan, RSC Adv.,
2013, 3, 19515–19524.
E. Souteyrand, J. J. Vasseur, F. Morvan and Y. Chevolot,
Chem. Commun., 2009, 6795–6797.
9 B. Richichi, A. Imberty, E. Gillon, R. Bosco, I. Sutkeviciute, 30 S. Park and I. Shin, Org. Lett., 2007, 9, 1675–1678.
F. Fieschi and C. Nativi, Org. Biomol. Chem., 2013, 11, 31 F. Pertici, N. J. de Mol, J. Kemmink and R. J. Pieters, Chem.
4086–4094.
– Eur. J., 2013, 19, 16923–16927.
10 R. J. Pieters, Org. Biomol. Chem., 2009, 7, 2013–2025.
11 G. Pourceau, A. Meyer, Y. Chevolot, E. Souteyrand,
J. J. Vasseur and F. Morvan, Bioconjugate Chem., 2010, 21,
1520–1529.
32 F. Casoni, L. Dupin, G. Vergoten, A. Meyer, C. Ligeour,
T. Gehin, O. Vidal, E. Souteyrand, J. J. Vasseur, Y. Chevolot
and F. Morvan, Org. Biomol. Chem., 2014, 12, 9166–9179.
33 N. Garber, U. Guempel, A. Belz, N. Gilboa-Garber and
R. J. Doyle, Biochim. Biophys. Acta, 1992, 1116, 331–333.
12 B. Gerland, A. Goudot, G. Pourceau, A. Meyer, V. Dugas,
S. Cecioni, S. Vidal, E. Souteyrand, J. J. Vasseur, Y. Chevolot 34 R. U. Kadam, M. Bergmann, M. Hurley, D. Garg,
and F. Morvan, Bioconjugate Chem., 2012, 23, 1534–1547.
M. Cacciarini, M. A. Swiderska, C. Nativi, M. Sattler,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015