10.1002/anie.201801555
Angewandte Chemie International Edition
COMMUNICATION
coplanarity of the dipyrromethene moiety to the Ga(III)corrole
unit.
[3]
(a) J.-Y. Shin, H. Furuta, K. Yoza, S. Igarashi, A. Osuka, J. Am. Chem.
Soc. 2001, 123, 7190; (b) S. Saito, A. Osuka, Angew. Chem. Int. Ed.
2011, 50, 4342.
Furthermore, to verify the electronic nature of the intact -
circuit of Ga(III)corrole, 4 was treated with one electron oxidizing
[4]
[5]
(a) Y. Kamimura, S. Shimizu, A. Osuka, Chem. Eur. J. 2007, 13, 1620;
(b) J.-Y. Shin, H. Furuta, A. Osuka, Angew. Chem. Int. Ed. 2001, 40,
agent
tris(4-bromophenyl)ammoniumhexachloroantimonate
619.
(Magic Blue, E1/2= 1.1 V Vs SCE) in acetonitrile[12a,23] and
spectral change was monitored by UV-Vis-NIR spectroscopy
(Figure 6b). It exhibited a blue shifted Soret-type band (~400
nm), diminished Q-type band and new broad near-infrared
absorption (~1070 nm). The X-band ESR spectrum of 4 on
reaction with Magic Blue reveals the formation of a radical with
giso = 2.0057 in toluene/DCM (1:1, v/v) at 110 K (Figure 6c). As
expected, the HRMS-ESI analysis showed a molecular ion peak
at m/z = 1381.0441 (Figure S20), which can be attributed to a
chlorinated radical [4-Cl] having empirical formula of
C66H21F20ClN6Ga (1381.0447[M]+). The structure of chlorinated
radical [4-Cl] was assigned on the basis of mass-spectrometry
analysis and supported from the previous report,[23] where a
chlorine ion was found to be coordinated to the Ga(III) ion
(Figure 6a). The singly occupied molecular orbitals (SOMOs)
and spin density distribution plot of compound [4-Cl] showed
that the electron density of unpaired electron is distributed over
entire -system of hexaphyrin (Figure S25 and Figure 6d) with
no contribution from the Ga(III) centre, which is also consistent
with the isotropic ESR signal.
(a) T. Higashino, M. Inoue, A. Osuka; J. Org. Chem. 2010, 75, 7958; (b)
S. Gokulnath, K. Yamaguchi, M. Toganoh, S. Mori, H. Uno, H. Furuta,
Angew. Chem. Int. Ed. 2011, 50, 2302; (c) S. Mori, A. Osuka, J. Am.
Chem. Soc. 2005, 127, 803; (d) Y. Rao, T. Kim, K. H. Park, F. Peng, L.
Liu, Y. Liu, B. Wen, S. Liu, S. R. Kirk, L. Wu, B. Chen, M. Ma, M. Zhou,
B. Yin, Y. Zhang, D. Kim, J. Song, Angew. Chem. Int. Ed. 2016, 55,
6438.
[6]
(a) S. Saito, J.-Y. Shin, J. M. Lim, K. S. Kim, D. Kim, A. Osuka, Angew.
Chem. Int. Ed. 2008, 47, 9657; (b) J. M. Lim, J.-Y. Shin, Y. Tanaka, S.
Saito, A. Osuka, D. Kim, J. Am. Chem. Soc. 2010, 132, 3105; (c) M.
Pawlicki, L. L.-Grazynski; Chem. Asian J. 2015, 10, 1438.
[7]
[8]
(a) S. Mori, A. Osuka, Inorg. Chem. 2008, 47, 3937; (b) M. Alonso, P.
Geerlings, F. D. Proft; Chem. Eur. J. 2012, 18, 10916.
(a) A. Srinivasan, T. Ishizuka, A. Osuka, H. Furuta, J. Am. Chem. Soc.
2003, 125, 878; (b) S. Gokulnath, K. Nishimura, M. Toganoh, S. Mori,
H. Furuta; Angew. Chem. Int. Ed. 2013, 52, 6940; (c) M. Suzuki, M.-C
Yoon, D. Y. Kim, J. H Kwon, H. Furuta, D. Kim, A. Osuka; Chem. Eur.
J. 2006, 12, 1754.
[9]
(a) H. Mori, J. M. Lim, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2013,
52, 12997; (b) M. Suzuki, A. Osuka, J. Am. Chem. Soc. 2007, 129, 464.
[10] Interestingly, during the preparation of this manuscript, Furuta et. al.,
have reported a 휋-extended corrorin moiety with BODIPY dangles
attached to it; see Y. Hisamune,T. Kim, K. Nishimura, M. Ishida, M.
Toganoh, S. Mori, D. Kim, H. Furuta, Chem. Eur J, 2018, DOI:
10.1002/chem.201705516.
In summary, a strategically new expanded porphyrinoid
having corrole and a corrorin isomer unit onto a single
framework has been achieved by -expansion of corrole. The
NMR investigations reveal an interesting behavior of diatropic
and cross-conjugated circuit within the same macrocycle.
Computational investigations supported the experimental and
structural observations. The ability of the molecules to metallate
Rh(I) into the corrorin isomer ring system is demonstrated. The
facile oxidation of the molecules has been exploited to observe
the formation of a radical on one electron chemical oxidation.
Due to the presence of a dominating diatropic current for corrole
and non aromatic nature of corrorin, it is named as a parasitic
twin as both corrole and corrorin are isomers. The current work
demonstrates that this simple -expansion strategy via
condensation could be beneficial to access many more such
interesting molecules in the future.
[11] (a) V. G. Anand, S. Saito, S. Shimizu, A. Osuka, Angew. Chem. Int. Ed.
2005, 44, 7244; (b) W.-Y. Cha, T. Kim, A. Ghosh, Z. Zhang, X.-S Ke, R.
Ali, V. M. Lynch, J. Jung, W. Kim, S. Lee, S. Fukuzumi, J. S. Park; J. L.
Sessler; T. K. Chandrashekar; D. Kim; Nature Chemistry, 2017, 9,
1243.
[12] (a) J. Bendix, I. J. Dmochowski, H. B. Gray, A. Mahammed, L.
Simkhovich, Z. Gross, Angew. Chem. Int. Ed. 2000, 39, 4048; (b) I.
Saltsman, A. Mahammed, I. Goldberg, E. Tkachenko, M. Botoshansky,
Z. Gross, J. Am. Chem. Soc. 2002, 124, 7411.
[13] H. Furuta, H. Maeda, A. Osuka, J. Am. Chem. Soc. 2001, 123, 6435.
[14] (a) A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891; (b) X.-D.
Jiang, J. Zhao, D. Xi, H. Yu, J. Guan, S. Li, C.-L. Sun, L.-J. Xiao, Chem.
Eur. J. 2015, 21, 6079.
[15] (a) A. Srinivasan, M. Toganoh, T. Niino, A. Osuka, H. Furuta, Inorganic
Chemistry, 2008, 47, 11305.
[16] I. Judy, J. Wu, I. Fernández, P. V. R. Schleyer, J. Am. Chem. Soc.
2013, 135, 315.
[17] Crystallographic data for 4, see Supporting Information. Marginal
quality of the X-ray diffraction data did not allow discussing the bond
lengths and bond angles in detail. The HOMA values for 4 and 4-Rh
were calculated for the optimized geometries.
Acknowledgements
J.S. acknowledges DST-SERB-EMR/2016/005768 (New Delhi)
for research funding. B.B. acknowledges CREST-MHRD-FAST
(New Delhi) and UGC for SRF. R.V.R.R. thank IISER, Bhopal
and Rahul thank CSIR for fellowship.
[18] Gaussian 09, Revision D.01, see Supporting Information for full citation.
[19] A. Ghosh, T. Wondimagegn, A. B. J. Parusel, J. Am. Chem. Soc. 2000,
122, 5100.
Keywords: -expansion • corrole • hexaphyrin • corrorin
[20] (a) T. M. Krygowski, M. K. Cyrański, Chem. Rev. 2001, 101,1385; (b) T.
M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska, M.
Palusiak, Chem. Rev. 2014, 114, 6383.
[1]
(a) A. Jasat, D. Dolphin, Chem. Rev. 1997, 97, 2267; (b) T. D. Lash,
Angew. Chem. Int. Ed. 2000, 39, 1763; (c) H. Furuta, H. Maeda, A.
Osuka, Chem. Commun. 2002, 1795; (d) J. L. Sessler, D. Seidel,
Angew. Chem. Int. Ed. 2003, 42, 5134; (e) T. K. Chandrashekar, S.
Venkatraman, Acc. Chem. Res. 2003, 36, 676; (f) A. Ghosh, Angew.
Chem. Int. Ed. 2004, 43, 1918; (g) T. Tanaka, A. Osuka; Chem. Rev.
2017, 117, 2584.
[21] R. Herges, D. Geuenich, J. Phys. Chem. A 2001, 105, 3214.
[22] (a) K. Naoda, Y. M. Sung, J. M. Lim, D. Kim, A. Osuka; Chem. Eur. J.
2014, 20, 7698; (b) T. Higashino, A. Kumagaia, H. Imahori; Chem.
Commun., 2017, 53, 5091; (c) T. Yoneda, A. Osuka, Chem. Eur. J.
2013, 19, 7314.
[23] B. Basumatary, J. Rai, R. V. R. Reddy, J. Sankar, Chem. Eur. J. 2017,
23, 17458.
[2]
(a) M. Stępień, N. Sprutta, L. L.-Grażyński, Angew. Chem. Int. Ed.
2011, 50, 4288; (b) A. Osuka, S. Saito, Chem. Commun. 2011, 47,
4330; (c) M. Inoue, A. Osuka; Angew. Chem. Int. Ed. 2010, 49, 9488.
This article is protected by copyright. All rights reserved.