[5] Albanese C., Alzani R., Amboldi N., Avanzi N., Ballinari D., Brasca, M.G., Festuccia C., Fiorentini F., Locatelli G.,
Pastori W., Patton V., Roletto F., Colotta F., Galvani A., Isacchi A., Moll J., Pesenti E., Mercurio G., Ciomei M. (2010). Dual
targeting of CDK and Tropomyosin Receptor Kinase Families by the Oral Inhibitor PHA-848125, an Agent with
Broad-Spectrum Antitumor Efficacy. Molecular Cancer Therapeutics;9:2243-2254.
[6] Anscombe, E., Meschini, E., Moravidal, R., Martin, M. P., Staunton, D., & Geitmann, M., et al. (2014). Identification
and characterization of an irreversible inhibitor of CDK2. Chemistry & Biology;50:106-106.
[7] Criscitiello, C., Viale, G., Esposito, A., & Curigliano, G. (2014). Dinaciclib for the treatment of breast cancer. Expert
Opinion on Investigational Drugs;23:1305-12.
[8] Aspeslagh, S., Shailubhai, K., Bahleda, R., Gazzah, A., Varga, A., & Hollebecque, A., et al. (2017). Phase I
dose-escalation study of milciclib in combination with gemcitabine in patients with refractory solid tumors. Cancer
Chemotherapy & Pharmacology;79:1-9.
[9] Cihalova, D., Staud, F., & Ceckova, M. (2015). Interactions of cyclin-dependent kinase inhibitors at-7519, flavopiridol
and SNS-032 with ABCB1, ABCG2 and ABCC1 transporters and their potential to overcome multidrug resistance in
vitro. Cancer Chemother Pharmacol;76:105-116.
[10] Massard, C., Soria, J. C., Anthoney, D. A., Proctor, A., Scaburri, A., & Pacciarini, M. A., et al. (2011). A first in man,
phase I dose-escalation study of PHA-793887, an inhibitor of multiple cyclin-dependent kinases (cdk2, 1 and 4) reveals
unexpected hepatotoxicity in patients with solid tumors. Cell Cycle;10:963-970.
[11] Azimi, A., Caramuta, S., Seashoreludlow, B., Boström, J., Robinson, J. L., & Edfors, F., et al. (2018). Targeting CDK2
overcomes melanoma resistance against braf and hsp90 inhibitors. Molecular Systems Biology;14(3):e7858.
[12] Garg, M., Chauhan, M., Singh, P. K., Alex, J. M., & Kumar, R. (2015). Pyrazoloquinazolines: synthetic strategies and
bioactivities. European Journal of Medicinal Chemistry;97(32):444-461.
[13] Park, S. J., Kim, E., Yoo, M., Lee, J. Y., Park, C. H., & Hwang, J. Y., et al. (2017). Synthesis and biological evaluation
of N9-cis-cyclobutylpurine derivatives for use as cyclin-dependent kinase (CDK) inhibitors. Bioorganic & Medicinal
Chemistry Letters;27(18):4399-4404.
[14] Beria, I., Ballinari, D., Bertrand, J. A., Borghi, D., Bossi, R. T., & Brasca, M. G., et al. (2010). Identification of
4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as a new class of orally and selective Polo-like kinase 1
inhibitors. Journal of Medicinal Chemistry;53:3532-51.
[15] Beria I., Bossi R.T., Brasca M.G., Caruso M., Ceccarelli W., Fachin, G., Fasolini M., Forte B., Fiorentini F., Pesenti
B.
(2011)
NMS-P937,
a
4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor. Bioorganic &
Medicinal Chemistry Letters;21:2969-2974.
[16] Lan, P., Chen, W. N., Xiao, G. K., Sun, P. H., & Chen, W. M. (2010). 3D-QSAR and docking studies on
pyrazolo[4,3-h]qinazoline-3-carboxamides as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorganic & Medicinal
Chemistry Letters;20(22):6764-6772.
[17] Caldarelli M., Angiolini M., Disingrini T., Donati D., Guanci M., Nuvoloni, S., Posteri H., Quartieri F., Silvagni M.,
Colombo R. (2011) Synthesis and SAR of new pyrazolo[4,3-h]quinazoline-3-carboxamide derivatives as potent and
selective MPS1 kinase inhibitors. Bioorganic & Medicinal Chemistry Letters;21:4507-4511.
[18] Mascarenhas N., Bhattacharyya D., Ghoshal N. (2010) Why pyridine containing pyrido[2,3-d]pyrimidin-7-ones
selectively inhibit CDK4 than CDK2: Insights from molecular dynamics simulation. Journal of Molecular Graphics &
Modelling;28:695-706.
[19] Chohan T.A., Chen J.J., Qian H.Y., Pan Y.L., Chen J.Z. (2016) Molecular modeling studies to characterize
N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations.
Molecular Biosystems;12:1250-1268.
7