Novel and Expeditious Microwave-Assisted Three-Component
Reactions for the Synthesis of Spiroimidazolin-4-ones†
Ping Ye, Katie Sargent, Ethan Stewart, Ji-Feng Liu,* Daniel Yohannes, and Libing Yu
ArQule, Incorporated, DiVision of Chemical Technologies, 19 Presidential Way,
Woburn, Massachusetts 01801
jifeng.liu@yahoo.com; jliu@arqule.com
ReceiVed February 3, 2006
Highly efficient methods for the syntheses of spiroimidazolinones via microwave-assisted three-component
one-pot sequential reactions or one-pot domino reactions are described. The efficiency and utility of the
methods have been demonstrated by quickly accessing the antihypertensive drug irbesartan (2).
Introduction
of quinazolinone compounds including both natural products3j-l
and natural product-templated libraries.10 As an extension of
this highly efficient methodology and in conjunction with our
interests in the synthesis of other drug-like heterocycles, we
started the investigation of a spiroimidazolinone heterocyclic
system. We envisioned that the development of efficient and
concise methods for the synthesis of this heterocyclic system,
Microwave-assisted organic synthesis has impacted synthetic
chemistry significantly since the introduction of precision-
controlled microwave reactors.1 Numerous reactions including
heterocycle-forming, metal catalyzed cross-coupling, condensa-
tion, and cycloaddition reactions have been explored under
microwave conditions.2 In addition, microwave-heating technol-
ogy has been applied in the total syntheses of natural products.3
Imidazolin-4-ones (1) constitute an important class of phar-
macologically active compounds (Figure 1). The spiroimid-
azolinone irbesartan (2), in particular, has been a marketed drug
for the treatment of hypertension.4 Moreover, the compounds
containing core 1 also show the potential for the treatment of
cancer5 and obesity-related disorders.6 Arsenal herbicide also
embodies this core scaffold.7 For these reasons, much attention
has been paid to the synthesis and biological evaluation of this
class of compounds.8
(3) For recent applications of microwave technology in syntheses of
natural products, see: (a) Baxendale, I. R.; Ley, S. V.; Piutti, C. Angew.
Chem., Int. Ed. 2002, 41, 2194. (b) Kang, Y.; Mei, Y.; Du, Y.; Jin, Z. Org.
Lett. 2003, 5, 4481. (c) Grainger, R. S.; Patel, A. Chem. Commun. 2003,
1072. (d) Raheem, I. T.; Goodman, S. N.; Jacobsen, E. N. J. Am. Chem.
Soc. 2004, 126, 706. (e) Baran, P. S.; O’Malley, D. P.; Zografos, A. L.
Angew. Chem., Int. Ed. 2004, 43, 2674. (f) Hughes, R. A.; Thompson, S.
P.; Alcaraz, L.; Moody, C. J. Chem. Commun. 2004, 946. (g) Wolkenberg,
S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley, C.
W. Org. Lett. 2004, 6, 1453. (h) Le´pine, R.; Zhu, J. Org. Lett. 2005, 7,
2981. (i) Geske, G. D.; Wezeman, R. J.; Siegel, A. P.; Blackwell, H. E. J.
Am. Chem. Soc. 2005, 127, 12762. (j) Liu, J.-F.; Ye, P.; Zhang, B.-L.; Bi,
G.; Sargent, K.; Yu, L.; Yohannes, D.; Baldino, C. M. J. Org. Chem. 2005,
70, 6339. (k) Liu, J.-F.; Ye, P.; Sprague, K.; Sargent, K.; Yohannes, D.;
Baldino, C. M.; Wilson, C. J.; Ng, S.-C. Org. Lett. 2005, 7, 3363. (l) Liu,
J.-F.; Kaselj, M.; Isome, Y.; Chapnick, J.; Zhang, B.; Bi, G.; Yohannes,
D.; Yu, L.; Baldino, C. M. J. Org. Chem. 2005, 70, 10488.
(4) (a) Bernhart, C. A.; Breliere, J.-C.; Clement, J.; Nisato, D.; Perreaut,
P. M. EP 454511, 1991; FR 2659967, 1990; US 5270317, 1993; WO
9114679, 1991. (b) Bernhart, C. A.; Perreaut, P. M.; Ferrari, B. P.; Muneaux,
Y. A.; Assens, J.-L. A.; Clement, J.; Haudricourt, F.; Muneaux, C. F.;
Taillades, J. E.; Vignal, M.-A.; Gougat, J.; Guiraudou, P. R.; Lacour, C.
A.; Roccon, A.; Cazaubon, C. F.; Breliere, J.-C.; Le Fur, G.; Nisato, D. J.
Med. Chem. 1993, 36, 3371.
As part of our ongoing efforts to develop efficient method-
ologies and processes for the high-throughput synthesis of
pharmacologically interesting libraries for drug discovery, we
recently developed highly efficient protocols using microwave
technology.9 This new methodology was used for the synthesis
† This paper is dedicated to Professor Akira Mori for his retirement from
Kyushu University, Japan, in March 2006.
(1) For a recent review of microwave-assisted organic synthesis, see:
(a) Kappe, C. O.; Dallinger, D. Nat. ReV. Drug DiscoVery 2006, 5, 55. (b)
Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250. (c) Lidstro¨m, P.;
Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225. (d)
Perreux, L.; Loupy, A. Tetrahedron, 2001, 57, 9199 and references therein.
(2) (a) Shipe, W. D.; Wolkenberg, S. E.; Lindsley, C. W. Drug DiscoVery
Today 2005, 2, 155. (b) Leadbeater, N. E. Chem. Commun. 2005, 2881
and references therein.
(5) (a) Qian, X.; Bergnes, G.; Morgans, D. WO 2004103282, 2004. (b)
Lyssikatos, J. P. WO 9749700, 1997. (c) Yang, B. V.; Lyssikatos, J. P. US
6194438, 2001.
(6) Chen, Y.; O′Connor, S. J.; Guan, D.; Newcom, J.; Chen, J.; Yi, L.;
Zhang, H.; Hunyadi, L. M.; Natero, R. WO 2004058727, 2004.
(7) Los, M. EP 41623, 1981; GB 2174395, 1986.
10.1021/jo060228q CCC: $33.50 © 2006 American Chemical Society
Published on Web 03/18/2006
J. Org. Chem. 2006, 71, 3137-3140
3137