Site-Directed Conjugation of “Clicked” Glycopolymers
A R T I C L E S
been the subject of extensive research, and now that the
development of novel therapeutic strategies can be based on
multivalent interactions a better understanding of these factors
is required.13-16
workers43-50 in a range of applications that include the
preparation of glycocalyx-mimetic surfaces50 to the synthesis
of lactose-sulfate-based synthetic heparin analogues potentially
employable in areas related to therapeutic angiogenesis.48 The
synthesis of well-defined synthetic glycopolymers by TMM
LRP51-55 and RAFT polymerization56-60 and their use in a
number of specific applications have been described, and the
number of reports on this field is now rapidly growing.
A number of different strategies have been employed for the
synthesis of the required multivalent carbohydrate ligands.
Kiessling and co-workers have shown that polymers obtained
by ring-opening metathesis polymerization (ROMP) can ef-
ficiently interact with both lectins17-28 and cells.29-34 Controlled
radical polymerization techniques, in particular transition-metal-
mediated living radical polymerization (TMM LRP, often called
ATRP)35-38 and radical addition-fragmentation chain-transfer
(RAFT) polymerization,39-42 have emerged as leading strategies
to tailor-made neoglycopolymers with great control over a
number of macromolecular features that include polymer
architecture, chain length, and molecular weight distributions.
One of the main advantages in using these techniques includes
the high functional-group tolerance, which allows unprotected
sugar monomers and polar protic and nonprotic solvents such
as water and DMSO.12 Cyanoxyl-mediated radical polymeri-
zation has also been successfully employed by Chaikof and co-
Recently,28 we reported the synthesis of mannose- and/or
galactose-containing neoglycopolymers by combination of TMM
LRP and Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition,61,62
a “click chemistry”63 process. Our approach involved the
grafting of sugar azides onto a polyalkyne “clickable” scaffold
prepared by TMM LRP. Several azide-containing molecules
could be simultaneously grafted in different proportions onto
the same clickable scaffold, yielding libraries of different
copolymers in a process that we named a “coclicking” approach.
The ability of neoglycopolymers to interact with lectins and
cells is strongly dependent on their size, shape, structure, and
binding epitope density (defined as “the mole fraction of specific
bindingepitopesincorporatedintoamultivalentbackbone”26).3,13-15
For ligand comparative studies it is therefore of importance to
have a set of synthetic tools that allows for the synthesis of
libraries of polymers having identical macromolecular features,
with the relative density of epitope binding units being the only
variable. Postpolymerization processes appear to be the only
way for achieving this goal as long as extremely efficient
grafting processes are available. In this respect, use of “click-
able”polymers is very promising,64 especially since a recent
report by Munro and co-workers showed that some N-hydrox-
ysuccinimide ester polymers, polymeric scaffolds often em-
(13) Ambrosi, M.; Cameron, N. R.; Davis, B. G. Org. Biomol. Chem. 2005, 3
(9), 1593-1608.
(14) Mammen, M.; Chio, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998,
37 (20), 2755-2794.
(15) Kiessling, L. L.; Gestwicki, J. E.; Strong, L. E. Angew. Chem., Int. Ed.
2006, 45 (15), 2348-2368.
(16) Fuster, M. M.; Esko, J. D. Nat. ReV. Cancer 2005, 5 (7), 526-542.
(17) Mortell, K. H.; Weatherman, R. V.; Kiessling, L. L. J. Am. Chem. Soc.
1996, 118 (9), 2297-8.
(18) Choi, S.-K.; Mammen, M.; Whitesides, G. M. J. Am. Chem. Soc. 1997,
119 (18), 4103-4111.
(19) Schuster, M. C.; Mortell, K. H.; Hegeman, A. D.; Kiessling, L. L. J. Mol.
Catal. A: Chem. 1997, 116 (1-2), 209-216.
(20) Manning, D. D.; Hu, X.; Beck, P.; Kiessling, L. L. J. Am. Chem. Soc.
1997, 119 (13), 3161-3162.
(43) Grande, D.; Baskaran, S.; Baskaran, C.; Gnanou, Y.; Chaikof, E. L.
Macromolecules 2000, 33 (4), 1123-1125.
(21) Kanai, M.; Mortell, K. H.; Kiessling, L. L. J. Am. Chem. Soc. 1997, 119
(41), 9931-9932.
(44) Grande, D.; Baskaran, S.; Chaikof, E. L. Macromolecules 2001, 34 (6),
1640-1646.
(22) Mann, D. A.; Kanai, M.; Maly, D. J.; Kiessling, L. L. J. Am. Chem. Soc.
1998, 120 (41), 10575-10582.
(45) Sun, X.-L.; Grande, D.; Baskaran, S.; Hanson, S. R.; Chaikof, E. L.
Biomacromolecules 2002, 3 (5), 1065-1070.
(23) Strong, L. E.; Kiessling, L. L. J. Am. Chem. Soc. 1999, 121 (26), 6193-
6196.
(46) Sun, X.-L.; Faucher, K. M.; Houston, M.; Grande, D.; Chaikof, E. L. J.
Am. Chem. Soc. 2002, 124 (25), 7258-7259.
(24) Gestwicki, J. E.; Strong, L. E.; Kiessling, L. L. Angew. Chem., Int. Ed.
2000, 39 (24), 4567-4570.
(47) Hou, S.; Sun, X.-L.; Dong, C.-M.; Chaikof, E. L. Bioconjugate Chem. 2004,
15 (5), 954-959.
(25) Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L.
L. J. Am. Chem. Soc. 2002, 124 (50), 14922-14933.
(26) Cairo, C. W.; Gestwicki, J. E.; Kanai, M.; Kiessling, L. L. J. Am. Chem.
Soc. 2002, 124 (8), 1615-1619.
(48) Guan, R.; Sun, X.-L.; Hou, S.; Wu, P.; Chaikof, E. L. Bioconjugate Chem.
2004, 15 (1), 145-151.
(49) Sun, X.-L.; Stabler, C. L.; Cazalis, C. S.; Chaikof, E. L. Bioconjugate Chem.
2006, 17 (1), 52-57.
(27) Pontrello, J. K.; Allen, M. J.; Underbakke, E. S.; Kiessling, L. L. J. Am.
Chem. Soc. 2005, 127 (42), 14536-14537.
(50) Faucher, K. M.; Sun, X.-L.; Chaikof, E. L. Langmuir 2003, 19 (5), 1664-
(28) Ladmiral, V.; Mantovani, G.; Clarkson, G. J.; Cauet, S.; Irwin, J. L.;
Haddleton, D. M. J. Am. Chem. Soc. 2006, 128 (14), 4823-4830.
(29) Gordon, E. J.; Sanders, W. J.; Kiessling, L. L. Nature 1998, 392 (6671),
30-31.
1670.
(51) Ohno, K.; Tsujii, Y.; Fukuda, T. J. Polym. Sci., Part A: Polym. Chem.
1998, 36 (14), 2473-2481.
(52) Muthukrishnan, S.; Zhang, M.; Burkhardt, M.; Drechsler, M.; Mori, H.;
Mueller, A. H. E. Macromolecules 2005, 38 (19), 7926-7934.
(53) Gupta, S. S.; Raja, K. S.; Kaltgrad, E.; Strable, E.; Finn, M. G. Chem.
Commun. 2005, 4315-4317.
(30) Sanders, W. J.; Gordon, E. J.; Dwir, O.; Beck, P. J.; Alon, R.; Kiessling,
L. L. J. Biol. Chem. 1999, 274 (9), 5271-5278.
(31) Kiessling, L. L.; Gestwicki, J. E.; Strong, L. E. Curr. Opin. Chem. Biol.
2000, 4 (6), 696-703.
(54) Ladmiral, V.; Monaghan, L.; Mantovani, G.; Haddleton, D. M. Polymer
2005, 46 (19), 8536-8545.
(32) Gestwicki, J. E.; Strong, L. E.; Borchardt, S. L.; Cairo, C. W.; Schnoes,
A. M.; Kiessling, L. L. Bioorg. Med. Chem. 2001, 9 (9), 2387-2393.
(33) Gestwicki, J. E.; Kiessling, L. L. Nature 2002, 415 (6867), 81-84.
(34) Lamanna, A. C.; Gestwicki, J. E.; Strong, L. E.; Borchardt, S. L.; Owen,
R. M.; Kiessling, L. L. J. Bacteriol. 2002, 184 (18), 4981-4987.
(35) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules
1995, 28 (5), 1721-1723.
(55) Vazquez-Dorbatt, V.; Maynard, H. D. Biomacromolecules 2006, 7 (8),
2297-2302.
(56) Lowe, A. B.; Sumerlin, B. S.; McCormick, C. L. Polymer 2003, 44 (22),
6761-6765.
(57) Albertin, L.; Kohlert, C.; Stenzel, M.; Foster, L. J. R.; Davis, T. P.
Biomacromolecules 2004, 5 (2), 255-260.
(36) Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117 (20), 5614-
(58) Albertin, L.; Stenzel, M.; Barner-Kowollik, C.; Foster, L. J. R.; Davis, T.
P. Macromolecules 2004, 37 (20), 7530-7537.
15.
(37) Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. ReV. 2001, 101 (12), 3689-
3745.
(59) Albertin, L.; Stenzel, M. H.; Barner-Kowollik, C.; Foster, L. J. R.; Davis,
T. P. Macromolecules 2005, 38 (22), 9075-9084.
(60) Spain, S. G.; Albertin, L.; Cameron, N. R. Chem. Commun. 2006, 4198-
4200.
(38) Matyjaszewski, K.; Xia, J. Chem. ReV. 2001, 101 (9), 2921-2990.
(39) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.;
Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.;
Thang, S. H. Macromolecules 1998, 31 (16), 5559-5562.
(40) Barner, L.; Barner-Kowollik, C.; Davis, T. P.; Stenzel, M. H. Aust. J. Chem.
2004, 57 (1), 19-24.
(61) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67 (9),
3057-3064.
(62) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41 (14), 2596-2599.
(41) Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2005, 58 (6), 379-
(63) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001,
40 (11), 2004-2021.
410.
(42) Perrier, S.; Takolpuckdee, P. J. Polym. Sci., Part A: Polym. Chem. 2005,
43 (22), 5347-5393.
(64) Helms, B.; Mynar, J. L.; Hawker, C. J.; Frechet, J. M. J. J. Am. Chem.
Soc. 2004, 126 (46), 15020-15021.
9
J. AM. CHEM. SOC. VOL. 129, NO. 49, 2007 15157