tions of MCRs in the construction of homoallylic amines,2-5
useful intermediates in organic synthesis,6 which are commonly
synthesized by the allylation of aldimines, prepared from the
corresponding aldehydes and amines in advance using various
allylic nucleophiles.7 Among these MCRs that avoid the prior
synthesis of aldimines, the three-component reaction of alde-
hydes, carbamates, and allyltrimethylsilane to construct the
alkoxycarbonyl-protected homoallylic amines (eq 1) is particu-
FeSO4‚7H2O-Catalyzed Four-Component
Synthesis of Protected Homoallylic Amines
Qi-Yi Song, Bai-Ling Yang, and Shi-Kai Tian*
Department of Chemistry, School of Chemistry and Material
Science, UniVersity of Science and Technology of China,
Hefei, Anhui 230026, China
ReceiVed March 5, 2007
larly interesting in that the protecting groups are most often
employed to handle amines in organic synthesis and can easily
undergo further conversions using well-established protective
group chemistry without affecting the double bonds.8
The replacement of the carbamate in the above three-
component reaction with N-silylcarbamate reported by Yokoza-
wa and co-workers not only allowed the reaction to proceed
under milder reaction conditions but also extended the chemistry
to a couple of simple ketones, though the yields were far from
satisfactory.2h Given that N-silylcarbamate could be easily
prepared from the corresponding alkyl chloroformate and
1,1,1,3,3,3-hexamethyldisilazane (HMDS),9 a four-component
An efficient catalytic four-component reaction of carbonyl
compounds (or acetals/ketals), benzyl chloroformate (CbzCl),
1,1,1,3,3,3-hexamethyldisilazane (HMDS), and allyltrimethyl-
silane has been successfully developed to produce Cbz-
protected homoallylic amines in the presence of 5 mol % of
iron(II) sulfate heptahydrate (FeSO4‚7H2O), an inexpensive
and environmentally friendly catalyst, at room temperature.
(3) For the three-component reaction of aldehydes, amines, and allylic
organometallics, see: (a) Das, B.; Laxminarayana, K.; Ravikanth, B.;
Ramarao, B. Tetrahedron Lett. 2006, 47, 9103. (b) Das, B.; Ravikanth, B.;
Thirupathi, P.; Rao, B. V. Tetrahedron Lett. 2006, 47, 5041. (c) Li, G.-l.;
Zhao, G. Synthesis 2006, 3189. (d) Choudary, B. M.; Jyothi, K.; Madhi,
S.; Kantam, M. L. Synlett 2004, 231. (e) Aspinall, H. C.; Bissett, J. S.;
Greeves, N.; Levin, D. Tetrahedron Lett. 2002, 43, 323. (f) Akiyama, T.;
Onuma, Y. J. Chem. Soc., Perkin Trans. 1 2002, 1157. (g) Akiyama, T.;
Iwai, J.; Onuma, Y. Kagoshima, H. Chem. Commun. 1999, 2191.
(4) For the three-component reaction of carbonyl compounds, ammonia,
and allyl boron reagents, see: (a) Dhudshia, B.; Tiburcio, J.; Thadani, A.
N. Chem. Commun. 2005, 5551. (b) Kobayashi, S.; Hirano, K.; Sugiura,
M. Chem. Commun. 2005, 104. (c) Sugiura, M.; Hirano, K.; Kobayashi, S.
J. Am. Chem. Soc. 2004, 126, 7182.
One of the most promising approaches to construct complex
organic molecules is being pursued by the development of
multicomponent reactions (MCRs) that involve the one-pot
transformation of three or more starting materials into a single
product that incorporates portions of all of the reactants.1 When
compared with the sequential synthesis of the same target by
conventional bimolecular reactions, MCRs provide significant
advantages such as the atom economical and convergent
character, the simplicity of the one-pot procedure, the possible
structural variations, and the accessible complexity of the
molecules. Recent years have witnessed a number of applica-
(5) For the three-component reaction of aldehydes, tosylamide, and
R-methylstyrene, see: Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org.
Chem. 2003, 68, 3112.
(6) For some of the recent applications of homoallylic amines in organic
synthesis, see: (a) Kropf, J. E.; Meigh, I. C.; Bebbington, M. W. P.;
Weinreb, S. M. J. Org. Chem. 2006, 71, 2046. (b) Friestad, G. K.; Korapala,
C. S.; Ding, H. J. Org. Chem. 2006, 71, 281. (c) Pandey, M. K.; Bisai, A.;
Pandey, A.; Singh, V. K. Tetrahedron Lett. 2005, 46, 5039. (d) Atobe, M.;
Yamazaki, N.; Kibayashi, C. Tetrahedron Lett. 2005, 46, 2669. (e)
Ramachandran, P. V.; Burghardt, T. E.; Bland-Berry, L. J. Org. Chem.
2005, 70, 7911. (f) Varlamov, A. V.; Zubkov, F. I.; Boltukhina, E. V.;
Sidorenko, N. V.; Borisov, R. S. Tetrahedron Lett. 2003, 44, 3641. (g)
Gille, S.; Ferry, A.; Billard, T.; Langlois, B. R. J. Org. Chem. 2003, 68,
8932. (h) Randl, S.; Blechert, S. J. Org. Chem. 2003, 68, 8879. (h) Kim,
G.; Jung, S.; Lee, E.; Kim, N. J. Org. Chem. 2003, 68, 5395. (i) Jain, R.
P.; Williams, R. M. J. Org. Chem. 2002, 67, 6361. (j) Expo´sito, A.;
Ferna´ndez-Sua´rez, M.; Iglesias, T.; Mun˜oz, L.; Riguera, R. J. Org. Chem.
2001, 66, 4206. (k) Wright, D. L.; Schulte, J. P., II; Page, M. A. Org. Lett.
2000, 2, 1847. (l) Hunt, J. C. A.; Laurent, P.; Moody, C. J. Chem. Commun.
2000, 1771.
(7) For reviews, see: (a) Puentes, C. O.; Kouznetsov, V. J. Heterocycl.
Chem. 2002, 39, 595. (b) Bloch, R. Chem. ReV. 1998, 98, 1407. (c) Enders,
D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895. (d) Yamamoto,
Y.; Asao, N. Chem. ReV. 1993, 93, 2207. For the allylation of acylhydra-
zones, see: (e) Sugiura, M.; Kobayashi, S. Angew. Chem., Int. Ed. 2005,
44, 5176. (f) Kobayashi, S.; Sugiura, M.; Ogawa, C. AdV. Synth. Catal.
2004, 346, 1023.
(1) For reviews, see: (a) Dondoni, A.; Massi, A. Acc. Chem. Res. 2006,
39, 451. (b) Do¨mling, A. Chem. ReV. 2006, 106, 17. (c) Ramo´n, D. J.;
Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602. (d) Zhu, J. Eur. J. Org.
Chem. 2003, 1133. (e) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.;
Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36,
899. (f) Orru, R. V. A.; Greef, M. Synthesis 2003, 1471. (g) Do¨emling, A.;
Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168. (h) Weber, L.; Illgen, K.;
Almstetter, M. Synlett 1999, 366.
(2) For the three-component reaction of carbonyl compounds, carbamates,
and allyltrialkylsilanes, see: (a) Smitha, G.; Miriyala, B.; Williamson, J.
S. Synlett 2005, 839. (b) Ella-Menye, J.-R.; Dobbs, W.; Billet, M.; Klotz,
P.; Mann, A. Tetrahedron Lett. 2005, 46, 1897. (c) Lipomi, D. J.; Panek,
J. S. Org. Lett. 2005, 7, 4701. (d) Kalita, H. R.; Phukan, P. Synth. Commun.
2005, 35, 475. (e) Phukan, P. J. Org. Chem. 2004, 69, 4005. (f) Ollevier,
T.; Ba, T. Tetrahedron Lett. 2003, 44, 9003. (g) Billet, M.; Klotz, P.; Mann,
A. Tetrahedron Lett. 2001, 42, 631. (h) Niimi, L.; Serita, K.; Hiraoka, S.;
Yokozawa, T. Tetrahedron Lett. 2000, 41, 7075. (i) Meester, W. J. N.;
Rutjes, F. P. J. T.; Hermkens, P. H. H.; Hiemstra, H. Tetrahedron Lett.
1999, 40, 1601. (j) Veenstra, S. J.; Schmid, P. Tetrahedron Lett. 1997, 38,
997.
(8) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis, 3rd ed.; Wiley: New York, 1999.
(9) Pump, J.; Wannagat, U. Monatsh. Chem. 1962, 93, 352.
10.1021/jo0704558 CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/06/2007
J. Org. Chem. 2007, 72, 5407-5410
5407