One Step Conversion of
Heteroaromatic-N-Oxides to
Imidazolo-Heteroarenes
John M. Keith
Johnson & Johnson Pharmaceutical Research and DeVelopment
L.L.C., 3210 Merryfield Row, San Diego, California 92121
ReceiVed September 19, 2007
FIGURE 1. Possible strategies for the activation and substitution of
N-oxides with potential side reactions shown.
Various pyridine-, quinoline-, isoquinoline-, and pyrimidine-
N-oxides were converted to their corresponding R-imida-
zoloheteroarenes in good yield by treatment with sulfuryl
diimidazole in nonpolar solvents at elevated temperatures.
FIGURE 2. Possible mechanism for conversion of heteroarene-N-
oxides to R-imidazolo-heteroarenes with sulfuryl diimidazole.
With our continuing interest in transformations of potential
use to the pharmaceutical industry,1 we wished to develop an
alternate method for the introduction of imidazole functionality
R- to heteroarene nitrogens. Typically, imidazole is introduced
to electron-poor heteroarenes via substitution of a halide at
elevated temperatures2 or through the use of a copper catalyst.3,4
The heteroarene halide, in turn, can be prepared by halogenation
of an N-oxide precursor5 with subsequent deoxygenation,6-9
deoxygenative halogenation,10 direct metalation of an N-oxide
followed by quenching with an electrophilic halide source,11 or
through the conversion of an R-hydroxyl group with an oxyphilic
halide source such as SOCl212 or POCl3.13 We felt it was feasible
to circumvent the need for the halide through activation of
heteroarene-N-oxides to nucleophilic attack with concomitant
elimination of the oxygen functionality, giving both a more
concise and orthogonal approach to the introduction of imida-
zole. Such a transformation could be approached in several
ways (Figure 1): (1) the N-oxide could be converted to an
isolable salt14,15 and then treated with imidazole; (2) the N-oxide
could be activated in situ16 and treated with imidazole; or (3)
the N-oxide could be treated with an electrophile with imidazole
as a labile substituent. Each of these approaches is precedented
in the literature, but they have different potential propensities
to give side products. Activation of an N-oxide by either
approach (1) or (2) has the potential to give alternate pro-
ducts incorporating imidazole. In eq 1, the R′ group on the
N-oxide could be transferred to imidazole thus consuming the
activating agent and nucleophile. In other instances, the nu-
cleophile may be basic enough to promote the oxidation of
the R′ group, thus consuming the N-oxide.17 In eq 2, the
electrophilic substituent on the N-oxide could be transferred
(1) (a) Keith, J. M. J. Org. Chem. 2006, 71, 9540-9543. (b)
Letavic, M. A.; Ly, K. S. Tetrahedron Lett. 2007, 48, 2339-2343. (c)
Dvorak, C. A.; Rudolph, D. A.; Ma, S.; Carruthers, N. I. J. Org.
Chem. 2005, 70, 4188-4190. (d) Deng, X.; Mani, N. S. Org. Lett. 2006, 8,
3505-3508.
(2) Vanotti, E.; D’Alessio, R.; Tibolla, M.; Varasi, M.; Montagnoli, A.;
Santocanale, C.; Martina, K.; Menichincheri, M. PCT Int. Appl. 2005, 65,
WO2005013986.
(3) Choudary, B. M.; Sridhar, C.; K.; Mannepalli, L.; Venkanna, G. T.;
Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 9948-9949.
(4) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164-5173.
(5) Hou, Y.; Zeng, X.; Wang, T.; Xia, Z.; Wei, M. Chinese Patent 2003,
7, CN1453269
(6) Singh, S. K.; Reddy, M. S.; Mangle, M.; Ganesh, K. R. Tetrahedron
2007, 63, 126-130.
(12) Blackaby, W. P.; Atack, J. R.; Bromidge, F.; Castro, J. L.; Goodacre,
S. C.; Hallett, D. J.; Lewis, R. T.; Marshall, G. R.; Pike, A.; Smith, A. J.;
Street, L. J.; Tattersall, D. F. D.; Wafford, K. A. Bioorg. Med. Chem. Lett.
2006, 16, 1175-1179.
(7) Yoo, B. W.; Choi, J. W.; Yoon, C. M. Tetrahedron Lett. 2006, 47,
125-126.
(8) Park, E. S.; Lee, S. H.; Lee, J. H.; Rhee, H. J.; Yoon, C. M. Synthesis
2005, 20, 3499-3501.
(9) Connon, S. J.; Hegarty, A. F. Eur. J. Org. Chem. 2004, 16, 3477-
3483.
(13) Anderson, R. J.; Hill, J. B.; Morris, J. C. J. Org. Chem. 2005, 70,
6204-6212.
(14) Ford, N. F.; Browne, L. J.; Campbell, T.; Gemenden, C.; Goldstein,
R.; Gude, C.; Wasley, J. W. F. J. Med. Chem. 1985, 28, 164-70.
(15) Traynelis, V. J.; Kimball, J. P. J. Org. Chem. 1975, 40, 2365-9.
(16) Yin, J.; Xiang, B.; Huffman, M. A.; Raab, C. E.; Davies, I. W. J.
Org. Chem. 2007, 72, 4554-4557.
(17) (a) Stowell, J. C. J. Org. Chem. 1970, 35, 244-245. (b) Henrick,
C. A. Tetrahedron 1977, 33, 1845-1889. (c) Feely, W.; Lehn, W. L.;
Boekelheide, V. J. Org. Chem. 1957, 22, 1135.
(10) Trejo, A.; Arzeno, H.; Browner, M.; Chanda, S.; Cheng, S.; Comer,
D. D.; Dalrymple, S. A.; Dunten, P.; Lafargue, J.; Lovejoy, B.; Freire-
Moar, J.; Lim, J.; McIntosh, J.; Miller, J.; Papp, E.; Reuter, D.; Roberts,
R.; Sanpablo, F.; Saunders, J.; Song, K.; Villasenor, A.; Warren, S. D.;
Welch, M.; Weller, P.; Whiteley, P. E.; Zeng, L.; Goldstein, D. M. J. Med.
Chem. 2003, 46, 4702-4713.
(11) Louerat, F.; Gros, P. C.; Fort, Y. Synlett 2006, 1379-1383.
10.1021/jo702038g CCC: $40.75 © 2008 American Chemical Society
Published on Web 12/08/2007
J. Org. Chem. 2008, 73, 327-330
327