Castro et al.
GluCls as Drug Targets
Hernando, G., Turani, O., and Bouzat, C. (2019). Caenorhabditis elegans muscle
Cys-loop receptors as novel targets of terpenoids with potential anthelmintic
Hibbs, R. E., and Gouaux, E. (2011). Principles of activation and permeation
in an anion-selective Cys-loop receptor. Nature 474, 54–60. doi: 10.1038/
Holden-Dye, L., and Walker, R. J. (2006). Actions of glutamate and ivermectin
on the pharyngeal muscle of Ascaridia galli: a comparative study with
Nielsen, B. E., Minguez, T., Bermudez, I., and Bouzat, C. (2018). Molecular
function of the novel α7β2 nicotinic receptor. Cell. Mol. Life Sci. 75, 2457–2471.
Omura, S. (2008). Ivermectin: 25 years and still going strong. Int. J. Antimicrob.
Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993). Production of
high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad.
Holden-Dye, L., and Walker, R. J. (2007). Anthelmintic drugs. WormBook 2, 1–13.
Holden-Dye, L., and Walker, R. J. (2014). Anthelmintic drugs and nematicides:
Pemberton, D. J., Franks, C. J., Walker, R. J., and Holden-Dye, L. (2001).
Characterization of glutamate-gated chloride channels in the pharynx of wild-
type and mutant Caenorhabditis elegans delineates the role of the subunit
GluCl-2 in the function of the native receptor. Mol. Pharmacol. 59, 1037–1043.
Horoszok, L., Raymond, V., Sattelle, D. B., and Wolstenholme, A. J. (2001). GLC-3:
a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-
gated chloride channel subunit from Caenorhabditis elegans. Br. J. Pharmacol.
Jones, A. K., Rayes, D., Al-Diwani, A., Maynard, T. P., Jones, R., Hernando, G., et al.
(2011). A Cys-loop mutation in the Caenorhabditis elegans nicotinic receptor
subunit UNC-63 impairs but does not abolish channel function. J. Biol. Chem.
Jones, A. K., and Sattelle, D. B. (2008). The cys-loop ligand-gated ion channel
gene superfamily of the nematode, Caenorhabditis elegans. Invert. Neurosci. 8,
41–47.
Kass, I. S., Wang, C. C., Walrond, J. P., and Stretton, A. O. (1980). Avermectin B1a,
a paralyzing anthelmintic that affects interneurons and inhibitory motoneurons
Keiser, J., Panic, G., Adelfio, R., Cowan, N., Vargas, M., and Scandale, I. (2016).
Evaluation of an FDA approved library against laboratory models of human
Komuniecki, R., Law, W. J., Jex, A., Geldhof, P., Gray, J., Bamber, B., et al. (2012).
Monoaminergic signalling as a target for anthelmintic drug discovery: receptor
conservation among the free-living and parasitic nematodes. Mol. Biochem.
Laing, R., Gillan, V., and Devaney, E. (2017). Ivermectin - Old Drug. New Tricks?
Le Jambre, L. F., Lenane, I. J., and Wardrop, A. J. (1999). A hybridization technique
to identify anthelmintic resistance genes in Haemonchus. Int. J. Parasitol. 29,
Ranganathan, R., Cannon, S. C., and Horvitz, H. R. (2000). MOD-1 is a serotonin-
gated chloride channel that modulates locomotory behaviour in C.elegans.
Rayes, D., Flamini, M., Hernando, G., and Bouzat, C. (2007). Activation of
single nicotinic receptor channels from Caenorhabditis elegans muscle. Mol.
Sangster, N. C., Bannan, S. C., Weiss, A. S., Nulf, S. C., Klein, R. D., and Geary,
T. G. (1999). Haemonchus contortus: sequence heterogeneity of internucleotide
binding domains from P-glycoprotein. Exp. Parasitol. 91, 250–257. doi: 10.1006/
Scoccia, J., Castro, M. J., Faraoni, M. B., Bouzat, C., Martín, V. S., and Gerbino,
D. C. (2017). Iron (II) promoted direct synthesis of dibenzo[b,e]oxepin-
11(6H)-one derivatives with biological activity. A short synthesis of doxepin.
Stiernagle, T. (2006). Maintenance of C. elegans. WormBook 1–11. doi: 10.1895/
Touroutine, D., Fox, R. M., Von Stetina, S. E., Burdina, A., Miller, D. M. III, and
Richmond, J. E. (2005). acr-16 encodes an essential subunit of the levamisole-
resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular
Towers, P. R., Edwards, B., Richmond, J. E., and Sattelle, D. B. (2005).
The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic
acetylcholine receptor alpha subunit. J. Neurochem. 93, 1–9. doi: 10.1111/j.
Trojanowski, N. F., Raizen, D. M., and Fang-Yen, C. (2016). Pharyngeal pumping
in Caenorhabditis elegans depends on tonic and phasic signaling from the
Vassilatis, D. K., Arena, J. P., Plasterk, R. H., Wilkinson, H. A., Schaeffer, J. M.,
Cully, D. F., et al. (1997). Genetic and biochemical evidence for a novel
avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and
Li, P., Slimko, E. M., and Lester, H. A. (2002). Selective elimination of glutamate
activation and introduction of fluorescent proteins into a Caenorhabditis
Liu, Y., and Dilger, J. P. (1991). Opening rate of acetylcholine receptor channels.
Lynagh, T., and Lynch, J. W. (2012). Ivermectin binding sites in human and
invertebrate Cys-loop receptors. Trends Pharmacol. Sci. 33, 432–441. doi: 10.
Martin, R. J. (1997). Modes of action of anthelmintic drugs. Vet. J. 154, 11–34.
McCavera, S., Rogers, A. T., Yates, D. M., Woods, D. J., and Wolstenholme, A. J.
(2009). An ivermectin-sensitive glutamate-gated chloride channel from the
parasitic nematode Haemonchus contortus. Mol. Pharmacol. 75, 1347–1355.
Ménez, C., Alberich, M., Kansoh, D., Blanchard, A., and Lespine, A. (2016).
Acquired tolerance to ivermectin and moxidectin after drug selection pressure
in the nematode Caenorhabditis elegans. Antimicrob. Agents Chemother. 60,
Meyers, J. I., Gray, M., Kuklinski, W., Johnson, L. B., Snow, C. D., Black, W. C.,
et al. (2015). Characterization of the target of ivermectin, the glutamate-gated
chloride channel, from Anopheles gambiae. J. Exp. Biol. 218(Pt 10), 1478–1486.
Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L., and Yeh, J. Z. (2010). Glutamate-
activated chloride channels: unique fipronil targets present in insects but not
Wolstenholme, A. J. (2011). Ion channels and receptor as targets for the control of
parasitic nematodes. Int. J. Parasitol. Drugs Drug Resist. 1, 2–13. doi: 10.1016/j.
Wolstenholme, A. J. (2012). Glutamate-gated chloride channels. J. Biol. Chem. 287,
Xu, M., Molento, M., Blackhall, W., Ribeiro, P., Beech, R., and Prichard, R.
(1998). Ivermectin resistance in nematodes may be caused by alteration of
P-glycoprotein homolog. Mol. Biochem. Parasitol. 91, 327–335. doi: 10.1016/
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
Copyright © 2020 Castro, Turani, Faraoni, Gerbino and Bouzat. This is an open-
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.
12