Communication
ChemComm
compared to monovalent reference 8 and dodecaglycosylated
6 (a) Y. Zhang and M. Barboiu, Chem. Rev., 2016, 116, 809; (b) J. M. Lehn,
Angew. Chem., Int. Ed., 2015, 54, 3276; (c) L. Hu, F. Schaufelberger,
B. J. J. Timmer, M. Abell ´a n-Flos and O. Ramstr o¨ m, Kirk-Othmer Encycl.
Chem. Technol., 2014, 1; (d) Y. Jin, C. Yu, R. J. Denman and W. Zhang,
Chem. Soc. Rev., 2013, 42, 6634; (e) Y. Zhang, L. Hu and O. Ramstr ¨o m, in
Supramolecular Systems in Biomedical Fields, ed. H.-J. Schneider, RSC
Publishing, 2013, p. 397; ( f ) Constitutional Dynamic Chemistry, ed.
M. Barboiu, Springer Verlag, Heidelberg, 2012; (g) M. Sakulsombat,
Y. Zhang and O. Ramstr o¨ m, Top. Curr. Chem., 2012, 322, 55;
(h) E. Moulin, G. Cormos and N. Giuseppone, Chem. Soc. Rev., 2012,
7
fullerene FÁ(R )12. Besides the multivalency effect, the results
indicate a tendency towards stronger binding for the larger
2
nanoplatform BRÁ(R ) , with octahedral presentation of the
6
7
5
ligands, as compared to scaffolds FÁ(R ) and CÁ(R ) , which
1
2
12
show octahedral and icosahedral carbohydrate presentations,
respectively. This effect is possibly due to more optimal local
2
densities of carbohydrates on Borromeate BRÁ(R )
6
, in contrast to
41, 1031; (i) Dynamic Combinatorial Chemistry: In Drug Discovery,
5
the higher spatial dispersion of carbohydrates in cage CÁ(R )12 and
Bioorganic Chemistry, and Materials Science, ed. B. L. Miller, John Wiley
& Sons, Inc., 2010; ( j) Dynamic Combinatorial Chemistry, ed. S. Otto and
J. N. H. Reek, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.
Z. He, W. Jiang and C. A. Schalley, Chem. Soc. Rev., 2015, 44, 779.
(a) C. D. Pentecost, N. Tangchaivang, S. J. Cantrill, K. S. Chichak,
A. J. Peters and J. F. Stoddart, J. Chem. Educ., 2007, 84, 855;
7
the smaller, more constrained fullerene FÁ(R )12. In conclusion,
these results reveal the importance of the spatial presentation of
carbohydrates for recognition events. It is also worth noticing that
this report shows the first application of molecular Borromean
rings in biomolecular recognition.
7
8
(
b) S. J. Cantrill, K. S. Chichak, A. J. Peters and J. F. Stoddart, Acc.
Chem. Res., 2005, 38, 1; (c) A. J. Peters, K. S. Chichak, S. J. Cantrill
and J. F. Stoddart, Chem. Commun., 2005, 3394; (d) K. S. Chichak,
S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V. Cave and J. L. Atwood,
et al., Science, 2004, 304, 1308.
(a) S. I. Swamy, J. Bacsa, J. T. A. Jones, K. C. Stylianou, A. Steiner and
L. K. Ritchie, et al., J. Am. Chem. Soc., 2010, 132, 12773; (b) T. Tozawa,
J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams and S. Shakespeare,
et al., Nat. Mater., 2009, 8, 973.
This project received funding from the European Union’s Seventh
Framework Programme for research, technological development
and demonstration under grant agreement no. 289033.
9
Notes and references
1
A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley and 10 (a) J. L. Culshaw, G. Cheng, M. Schmidtmann, T. Hasell, M. Liu and
C. R. Bertozzi, et al., Essentials of Glycobiology, Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, 2009.
(a) S. Cecioni, A. Imberty and S. Vidal, Chem. Rev., 2015, 115,
D. J. Adams, et al., J. Am. Chem. Soc., 2013, 135, 10007; (b) C. R. Yates,
D. Ben ´ı tez, S. I. Khan and J. F. Stoddart, Org. Lett., 2007, 9, 2433;
(c) K. S. Chichak, A. J. Peters, S. J. Cantrill and J. F. Stoddart, J. Org.
Chem., 2005, 70, 7956.
2
5
2
1
25; (b) Y. M. Chabre and R. Roy, Adv. Carbohydr. Chem. Biochem.,
010, 63, 165; (c) J. J. Lundquist and E. J. Toone, Chem. Rev., 2002, 11 (a) C. I. Cheng, Y.-P. Chang and Y.-H. Chu, Chem. Soc. Rev., 2012,
02, 555.
41, 1947; (b) O. Norberg, I. H. Lee, T. Aastrup, M. Yan and
O. Ramstr ¨o m, Biosens. Bioelectron., 2012, 34, 51; (c) O. Norberg,
L. Deng, T. Aastrup, M. Yan and O. Ramstr o¨ m, Anal. Chem., 2011,
83, 1000; (d) O. Norberg, L. Deng, M. Yan and O. Ramstr ¨o m,
Bioconjugate Chem., 2009, 20, 2364; (e) Z. Pei, H. Anderson,
T. Aastrup and O. Ramstr ¨o m, Biosens. Bioelectron., 2005, 21, 60.
3
(a) N. Hao, K. Neranon, O. Ramstr ¨o m and M. Yan, Biosens. Bio-
electron., 2016, 76, 113; (b) O. Ramstr ¨o m and M. Yan, Chem. – Eur. J.,
2
2
015, 21, 16310; (c) X. Chen, O. Ramstr ¨o m and M. Yan, Nano Res.,
014, 7, 1381; (d) A. Bernardi, J. Jim ´e nez-Barbero, A. Casnati, C. De
Castro, T. Darbre and F. Fieschi, et al., Chem. Soc. Rev., 2013,
4
4
2
2, 4709; (e) V. Wittmann and R. J. Pieters, Chem. Soc. Rev., 2013, 12 (a) J. Zhou, N. Hao, T. De Zoyza, M. Yan and O. Ramstr ¨o m, Chem.
2, 4492; ( f ) X. Wang, O. Ramstr o¨ m and M. Yan, Adv. Mater.,
010, 22, 1946.
Commun., 2015, 51, 9833; (b) N. Kong, M. R. Shimpi, O. Ramstr o¨ m
and M. Yan, Carbohydr. Res., 2015, 405, 33; (c) M. J. Chmielewski,
E. Buhler, J. Candau and J. M. Lehn, Chem. – Eur. J., 2014, 20, 6960;
(d) E. Mahon, Z. Mouline, M. Silion, A. Gilles, M. Pinteala and
M. Barboiu, Chem. Commun., 2013, 49, 3004.
4
5
A. Hirsch and O. Vostrowsky, Eur. J. Org. Chem., 2001, 829.
(a) M. Durka, K. Buffet, J. Iehl, M. Holler, J.-F. Nierengarten and
S. P. Vincent, Chem. – Eur. J., 2012, 18, 641; (b) M. S ´a nchez-Navarro,
A. Mu n˜ oz, B. M. Illescas, J. Rojo and N. Mart ´ı n, Chem. – Eur. J., 2011, 13 (a) C. A. Hunter and H. L. Anderson, Angew. Chem., Int. Ed., 2009,
1
7, 766; (c) S. Cecioni, V. Oerthel, J. Iehl, M. Holler, D. Goyard and
48, 7488; (b) L. L. Kiessling, T. Young, D. T. Gruber and H. K. Mortell,
Glycoscience: Chemistry and Chemical Biology, Springer, Berlin, Heidel-
berg, 2008, p. 2483; (c) M. Mammen, S. K. Choi and G. M. Whitesides,
Angew. Chem., Int. Ed., 1998, 37, 2755.
J.-P. Praly, et al., Chem. – Eur. J., 2011, 17, 3252; (d) J.-F. Nierengarten,
J. Iehl, V. Oerthel, M. Holler, B. M. Illescas and A. Munoz, et al., Chem.
Commun., 2010, 46, 3860.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016