M. J. Adler, S. W. Baldwin / Tetrahedron Letters 50 (2009) 5075–5079
5079
Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J.
Med. Chem. 1988, 31, 2235–2246.
was synthesized in 60% yield with no evidence of any other prod-
ucts in the crude reaction mixture. While this phenomenon needs
to be further explored, it is possible that the hydrogen-bonding
ability of this solvent is helping to attenuate unwanted side
reactions.
2. For a wealth of examples of natural products containing the 2,2-dimethyl-2H-
chromene core, see: Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G.-Q.;
Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939–9953.
3. Jayasuriya, H.; McChesney, J. D.; Swanson, S. M.; Pezzuto, J. M. J. Nat. Prod. 1989,
52, 325–331.
In summary, a novel, direct method to regioselectively synthe-
size variably substituted 2,2-dimethyl-2H-chromenes utilizing
microwave irradiation has been developed. This is a technique
which is complementary, and sometimes superior, to known
methods, and provides another approach to the synthesis of
4. Jayasuriya, H.; McChesney, J. D. J. Chem. Soc., Chem. Commun. 1988, 24, 1592–
1593.
5. Yamaguchi, K.; Richardson, M. D.; Bigner, D. D.; Kwatra, M. M. Cancer
Chemother. Pharmacol. 2005, 56, 585–593.
6. Gschwendt, M.; Müller, H.-J.; Kielbassa, K.; Zang, R.; Kittstein, W.; Rincke, G.;
Marks, F. Biochem. Biophys. Res. Commun. 1994, 199, 93–98.
7. Fang, N.; Casida, J. E. J. Nat. Prod. 1999, 62, 205–210.
8. Fang, N.; Casida, J. E. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3380–3384.
9. Pillai, S. P.; Menon, S. R.; Mitscher, L. A.; Pillai, C. A.; Shankel, D. M. J. Nat. Prod.
1999, 62, 1358–1362.
10. Cao, S.; Schilling, J. K.; Miller, J. S.; Andriantsiferana, R.; Rasamison, V. E.;
Kingston, D. G. I. J. Nat. Prod. 2004, 67, 454–456.
11. Bowers, W. S.; Ohta, T.; Cleere, J. S.; Marsella, P. A. Science 1976, 193, 542–547.
12. For a review of these and other techniques, see: Levai, A.; Timar, T.; Sebok, P.;
Eszenyi, T. Heterocycles 2000, 53, 1193–1203.
13. Mondal, M.; Puranik, V. G.; Argade, N. P. J. Org. Chem. 2006, 71, 4992–4995.
14. Subburaj, K.; Trivedi, G. K. Bull. Chem. Soc. Jpn. 1999, 72, 259–263.
15. Kang, Y.; Mei, Y.; Du, Y.; Jin, Z. Org. Lett. 2003, 5, 4481–4484.
16. Mondal, M.; Argade, N. P. Synlett 2004, 1243–1246.
17. Lesch, B.; Toräng, J.; Vanderheiden, S.; Bräse, S. Adv. Synth. Catal. 2005, 347,
555–562.
18. Lee, Y. R.; Choi, J. H.; Yoon, S. H. Tetrahedron Lett. 2005, 46, 7539–7543.
19. Li, Y.; Luo, Y.; Huang, W.; Wang, J.; Lu, W. Tetrahedron Lett. 2006, 47, 4153–
4155.
chromene-containing compounds. By altering
a few of the
variables associated with this reaction, a variety of 2,2-dimethyl-
2H-chromenes have been successfully generated in good yield.
While optimization of the described method is ideal for its applica-
tion to novel substrates, the conditions are generally applicable to
a wide range of starting phenols. The results reported in this
publication provide the current state of this research; work on
improving the efficiency and generality of this method is ongoing.
Acknowledgments
The authors would like to thank undergraduates Ben Rothstein
and Scott Wilson for their experimental contributions to this work
and Dr. Chris Roy and Dr. Dewey McCafferty for generously allowing
the use of their synthesis microwaves. They also thank Dr. David
Pham of the X-ray Diffraction Lab of the Chemistry Department,
Duke University for his work in obtaining the crystal structure, Dr.
Tony Ribeiro of the DukeUniversity NMRCenter for help in acquiring
the NOE data, and Dr. George Dubay for assistance with GC–MS.
20. Mondal, M.; Puranik, V. G.; Argade, N. P. J. Org. Chem. 2007, 72, 2068–2076.
21. Dintzner, M. R.; Lyons, T. W.; Akroush, M. H.; Wucka, P.; Rzepka, A. T. Synlett
2005, 785–788.
22. Bissada, S.; Lau, C. K.; Bernstein, M. A.; Dufresne, C. Can. J. Chem. 1994, 72,
1866–1869.
23. Chauder, B. A.; Lopes, C. C.; Lopes, R. S. C.; da Silva, A. J. M.; Snieckus, V.
Synthesis 1998, 279–282.
24. Olson, B. S.; Trauner, D. Synlett 2005, 4, 700–702.
25. Pettigrew, J. D.; Cadieux, J. A.; So, S. S. S.; Wilson, P. D. Org. Lett. 2005, 7, 467–
470.
Supplementary data
26. For a review of ortho-quinone methides in organic synthesis, see: Van De
Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367–5405.
27. Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley-VCH: Weinheim,
Germany, 2006.
28. Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563–2591.
29. Man, A. K.; Shahidan, R. J. Macromol. Sci., Pure Appl. Chem. 2007, 44, 651–
657.
Detailed experimental procedures, spectral data for all 2,2-di-
methyl-2H-chromene products, 1H and 13C spectra of the novel
structures 5 and 9, crystallographic data for chromene 9, and
NOE experiment spectra for the structural assignment of chromene
11. Supplementary data associated with this article can be found,
30. Appukkuttan, P.; Van der Eycken, E. Top. Curr. Chem. 2006, 266, 1–47.
31. For trials using the standardized conditions (150 W, 1 h, 3 equiv 1, 1 M
in CDCl3) the isolated yields are reported. For Tables
2 and 3, yields
were determined by NMR via comparison to an equimolar amount of
1,2-dimethoxyethane (based on starting phenol) added to the crude
reaction mixture after reaction completion and cooling. In all cases, the
References and notes
term ‘significant amount’ indicates
phenol.
32. Deodhar, M.; Black, D. S.; Kumar, N. Org. Prep. Proced. Int. 2006, 38, 94–99.
a cutoff of 5% relative to starting
1. Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter,
W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.;