6
Tetrahedron
ACCEPTED MANUSCRIPT
1
All reagents were obtained from commercial suppliers and used without further purification, unless otherwise indicated. H
NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded in CDCl3-d6 at room temperature using a Bruker Ultra Shield
Plus 400 MHz instrument with reference tetramethylsilane (TMS). Melting points (m.p.) were taken on a Gal-lenkamp apparatus.
FTIR spectra were measured using a Germany Bruker Vertex 80v FT-IR spectrometer by incorporating samples in KBr disks.
High resolution mass (HRMS) analyses were performed at an Auto Spec Premier mass spectrometer (Waters). Optical absorption
spectra were obtained by using a Cary 5000UV/Spectrophotometer (Varian). PL spectra were carried out on a LS-55
spectrofluorometer (Perkin-Elmer). Elemental analyses were performed using a Vario EL cube elemental analyzer.
4.2. General procedure for the synthesis of compound 1 and 2
Synthesis of probe 1: 3,6-ditrimethylsilylethynylbenzene-1,2-diamine(0.30 g, 1 mmol) and phenanthrene-9,10-dione (0.208 g,
1 mmol) were dissolved in ethanol and under reflux condition for 4 h. After cooling to room temperature, the precipitate was
filtrated to get yellow powdery product 1 (0.438 g, 92.8% yield). M.p. 235.3-236.5ꢂ, 1H NMR (CDCl3-d6, 400 MHz) δ = 9.465
(q, J = 4.0 Hz, 2H), 8.57 (d, J = 8.0 Hz, 2H), 7.96 (sꢃ2H), 7.82 (m, J = 4.0 Hz, 2H)ꢃ7.75 (t, J = 8.0 Hz, 2H), 0.45 (s, 18H).13C
NMR (CDCl3-d6, 100 MHz) δ =142.62, 142.11, 133.10, 132.28, 131.78, 129.77, 127.62, 126.44, 123.97, 122.76, 103.29, 101.30,
0.98. ESI-MS m/z: (M+1)+, calcd. for C30H28N2Si2, Exact Mass: 472.18; found :473.1865.Anal. Calcd (%) for C30H28N2Si2, C,
76.22; H, 5.97; N, 5.93; Found: C, 76.25; H, 5.96; N, 5.94.
Probe 2: Yield: 90.2%. M.p. 278.4-279.6ꢂ, 1H NMR (CDCl3-d6, 400 MHz) δ = 9.56 (d, J = 8.0 Hz, 2H), 9.205(d, J = 4.0 Hz,
2H), 7.735 (q, J = 4.0Hz, J = 8.0 Hz,2H), 0.38 (s, 18H). 13C NMR (CDCl3-d6, 100 MHz)δ=152.96, 148.64, 142.28, 140.97,
134.34, 127.31, 124.21, 123.90, 103.99, 100.68, 0.99. ESI-MS m/z: (M+1)+, calcd. for C28H26N4Si2, Exact Mass: 474.17; found
:475.1773. Anal. Calcd (%) for C28H26N4Si2, C, 70.84; H, 5.52; N, 11.80; Found: C, 70.81; H, 5.50; N, 11.83.
Acknowledgements
The authors greatly acknowledge the financial support in part by Natural Science Foundation of Jiangsu Province
(BK20130926), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (13KJB150018), Jiangsu
Planned Projects for Postdoctoral Research Funds (1302089C) and Scientific Research Foundation for the Returned Overseas
Chinese Scholars, State Education Ministry.
Supplementary data1H NMR,13C NMR, MS and FT-IR spectra of probe 1 and 2, UV-vis absorption and fluorescence spectra and
DFT calculations for probe 2 as well as comparison of detection limit with reported probes are provided.
References and notes
[1] Mcdonagh, C.; Burke, C. S.; MacCraith, B. D. Chem. Soc. Rev. 2008, 108, 400.
[2] Galbraith, E.; James, T. D. Chem. Soc. Rev. 2010, 39, 3831.
[3] Zhou, Y.; Zhang, J. F.; Yoon, J. Y. Chem. Rev. 2014, 114, 5511.
[4] Taner, B.; Kursunlu, A. N.; Guler, E. Spectrochim. Acta. A 2014, 118, 903.
[5] Kim, J. H.; Vicen, S. J.; Kim, J. S. Tetrahedron Lett. 2009, 50, 983.
[6] Zhao, Q.; Li, F. Y.; Liu, S. J.; Yu, M. X.; Liu, Z. Q.; Yi, T.; Huang, C. H. Inorg. Chem. 2008, 47, 9256.
[7] Yang, C. L.; Wang, X. L. J. Mater. Sci. 2014, 49, 7040.
[8] Yang, C.; Xu, J.; Chen, W.; Lu, M.; Li, Y.; Wang, X. J. Fluorine Chem. 2014, 158, 53.
[9] Serkan, E.; Ozcan, K.; Onder, A.; Sait, M. Tetrahedron Lett. 2013, 54, 613.
[10] Ashokkumar, P.; Weißhoff, H.; Kraus, W. Angew. Chem. Int. Ed. 2014, 53, 2225.
[11] Madhu, S.; Ravikanth, M. Inorg. Chem. 2014, 53, 1646.
[12] Martinez, M. R.; Sancenon, F. Coord. Chem. Rev. 2006, 250, 3081.
[13] Soon, Y. K.; Hong, J. - I. Org. Lett. 2007, 9, 3109.
[14] Kai, Y.; Hu, Y.; Wang, K.; Zhi, W.; Liang, M.; Yang, W. Spectrochim. Acta. A 2014, 118, 239.
[15] RajeswaraRao, M.; Ravikanth, M. Tetrahedron 2010, 66, 1728.
[16] Fu, L.; Jiang, F. L.; Liu, Y. Chem. Commun. 2011, 47, 5503.
[17] Buckland, D.; Bhosale, S. V.; Langford, S. J. Tetrahedron Lett. 2011, 52, 1990.
[18] Lu, H.; Wang, Q. H.; Shen, Z. Org. Biomol. Chem. 2011, 9, 4558.
[19] Purushothaman, B.; Bruzek, M.; Anthony, J. E. Angew. Chem. Int. Ed. 2011, 123, 7151.
[20] Xiao, J. C.; Li, S. Z.; Zhang, Q. C. Angew. Chem. Int. Ed. 2012, 51, 6094.
[21] Xiao, J.; Malliakas, C. D.; Liu, Y.; Zhou, F.; Zhang, Q. Chem. Asian J. 2012, 7, 672.
[22] Li, G.; Wu, Y. C.; Zhang, Q. C. Chem. Asian J. 2013, 8, 1574.
[23] Zhu, B.; Yuan, F.; Li, R.; Li, Y.; Wei, Q.; Ma, Z.; Du, B.; Zhang, X. Chem. Commun. 2011, 47, 7098.
[24] Hou, P.; Chen, S.; Wang, H.; Wang, J.; Voitchovsky, K.; Song, X. Chem. Commun. 2014, 50, 320.
[25] Kim, D.; Singha, S.; Wang, T.; Seo, E.; Lee, J. H.; Lee, S.-J.; Kim, K. H.; Ahn, K. H. Chem. Commun. 2012, 48, 10243.
[26] Cao, X.; Lin, W.; Yu, Q.; Wang, J. Org. Lett. 2011, 13, 6098.
[27] Bao, Y.; Liu, B.; Wang, H.; Tian J.; Bai, R. Chem. Commun. 2011, 47, 3957.
[28] Chen, J.; Liu, C.; Zhang, J.; Ding, W.; Zhou, M.; Wu, F. Chem. Commun. 2013, 49, 10814.
[29] Dong, M.; Peng, Y.; Dong, Y.-M.; Tang, N.; Wang, Y.-W. Org. Lett. 2011, 14, 130.
[30] Cao, J.; Zhao, C.; Feng, P.; Zhang, Y.; Zhu, W. RSC Adv. 2012, 2, 418.
[31] Sokkalingam, P.; Lee, C. -H. J. Org. Chem. 2011, 76, 3820.
[32] Yang, X.-F.; Qi, H.; Wang, L.; Su, Z.; Wang, G. Talanta 2009, 80, 92.